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Number Theorem. I thank Petr Glivický for valuable remarks on the proof of
Roth’s theorem.

July 2010 Martin Klazar

ii



Contents

Notation iv

1 Dirichlet’s theorem on primes in arithmetic progression 1
1.1 Cases p = 4n± 1 and p = qn+ 1 . . . . . . . . . . . . . . . . . . 2
1.2 Proof of Dirichlet’s theorem . . . . . . . . . . . . . . . . . . . . . 5
1.3 Nonvanishing of L(1, χ) . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Decomposition of Z∗m into cyclic groups . . . . . . . . . . . . . . 17
1.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 The Prime Number Theorem 23
2.1 Chebyshev’s bounds on π(x) . . . . . . . . . . . . . . . . . . . . . 24
2.2 Proof of the Prime Number Theorem . . . . . . . . . . . . . . . . 27
2.3 The extension of (z + 1)−1F (z + 1)− z−1 . . . . . . . . . . . . . 30
2.4 The theorem of Wiener and Ikehara . . . . . . . . . . . . . . . . 33
2.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Shnirel’man’s theorem on sums of prime numbers 36
3.1 Shnirel’man’s density . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Proof of Shnirel’man’s theorem . . . . . . . . . . . . . . . . . . . 39
3.3 Bounding r(n) by Selberg sieve . . . . . . . . . . . . . . . . . . . 42
3.4 Numbers λ∗d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Roth’s theorem on 3-term arithmetic progressions 53
4.1 Analytic proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Uniform bound on the unit circle . . . . . . . . . . . . . . . . . . 59
4.3 Graph-theoretical proof . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 The triangle removal lemma . . . . . . . . . . . . . . . . . . . . . 64
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N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .{1, 2, 3, . . . }
N0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .{0, 1, 2, . . . }
[n] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {1, 2, . . . , n}
ω(m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the number of distinct prime factors of m
p, q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . in chapters 1–3 denote prime numbers
π(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the function counting primes, p. 24
Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rational numbers
R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . real numbers
ϑ(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chebyshev’s function, p. 27
ζ(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the zeta function, p. 30
Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the integers, {. . . ,−2,−1, 0, 1, 2, . . . }

iv



Chapter 1

Dirichlet’s theorem on
primes in arithmetic
progression

Die aufmerksame Betrachtung der natürlichen Reihe der Primzahlen lässt an
derselben eine Menge von Eigenschaften wahrnehmen, deren Allgemeinheit durch
fortgesetzte Induction zu jedem beliebigen Grade von Wahrscheinlichkeit erhoben
werden kann, während die Auffindung eines Beweises, der allen Anforderun-
gen der Strenge genügen soll, mit den grössten Schwierigkeiten verbunden ist.
( . . . ) Erst nachdem ich den von Legendre eingeschlagenen Weg ganz verlassen
hatte, bin ich auf einen völlig strengen Beweis des Theorems über die arithmetis-
che Progression gekommen. Der von mir gefundene Beweis, welchen ich der
Akademie in dieser Abhandlung vorzulegen die Ehre habe, ist nicht rein arith-
metisch, sondern beruht zum Theil auf der Betrachtung stetig veränderlicher
Grössen. 1

G. Lejeune Dirichlet [12]

In 1837, P. Dirichlet (1805–1859) extended earlier partial results of L. Euler (and
of A.-M. Legendre, as he himself writes) and proved the following theorem.

Theorem 1.0.1 (Dirichlet, 1837) Every arithmetic progression

a, a+m, a+ 2m, a+ 3m, . . .

with coprime a ∈ Z and m ∈ N contains infinitely many prime numbers.

In other words, if the greatest common divisor of the numbers a ∈ Z and m ∈ N
is 1, then infinitely many prime numbers have form p = mn+a for some n ∈ N.

1For translation see Section 1.5 or [13].
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Dirichlet’s theorem was a starting point of analytic number theory and we devote
Chapter 1 to this fundamental and fascinating result.

We start in Section 1.1 with two proofs of the infinitude of primes of the form
p = 4n+1 and p = 4n−1, by Euclid’s argument and by Euler’s analytic method.
We present a simple proof of the infinitude of primes of the form p = qn+ 1 for
any prime q. Section 1.2 contains a proof of Theorem 1.0.1. The most difficult
step, establishing that L(1, χ) 6= 0 for nonprincipal characters χ, is relegated
to Section 1.3. In Section 1.4 we derive decomposition of the multiplicative
group Z∗m of residues modulo m coprime with m into cyclic factors; Z∗m plays
an important role in the proof of Dirichlet’s theorem but this decomposition is
not needed for the proof.

We present a classical version of the proof based on Dirichlet’s L-functions
L(s, χ) but we avoid functions of complex variable and work only with real s
and real-variable (but generally complex-valued) functions, with the exception
of complex logarithm. We derive the required properties of complex logarithm
in a self-contained manner in Proposition 1.2.7 and use them also in Chapter 2.
Another two proofs of Dirichlet’s theorem, one of them partial, are presented in
my second booklet [25].

1.1 Cases p = 4n± 1 and p = qn+ 1

We begin with Euclid’s proof of the infinitude of primes. Suppose that there
are only finitely many primes, p1, p2, . . . , pm. Consider their product r =
p1p2 . . . pm. The number r + 1 is bigger than 1 and is divisible by a prime
p. But then p = pi for some i and thus pi divides also 1 = (r + 1)− r, which is
impossible.

One can modify Euclid’s argument so that it proves the infinitude of primes
of both forms 4n−1 and 4n+1. Suppose that there are only finitely many primes
of the form 4n − 1, p1, p2, . . . , pm, and consider their product r = p1p2 . . . pm.
The number 4r − 1 is bigger than 1 and odd. The primes in its decomposition
have form 4n− 1 or 4n+ 1 but not all may be of the latter form because then
their product 4r− 1 would also have form 4n+ 1. Thus 4r− 1 is divisible by at
least one prime p = pi of the form 4n− 1 and we obtain the same contradiction
that p divides 1 = 4r − (4r − 1).

For primes of the form 4n+ 1 this argument ceases to work. Instead, we use
quadratic residues: −1 ≡ x2 has a solution x ∈ Z modulo p if and only if p = 2
or p = 4n+1. Suppose again that all primes of the form 4n+1 are p1, p2, . . . , pm
and for r = p1p2 . . . pm consider the number (2r)2 + 1. It is divisible by an odd
prime p and hence −1 is a quadratic residue modulo p. Thus p = 4n + 1 and
p = pi divides 1 = (2r)2 + 1− 4r2, a contradiction.

An ingenious algebraic argument proves Dirichlet’s theorem for primes of
the form qn+ 1, q prime. It is based on prime divisors of values of polynomials.

Proposition 1.1.1 The nonzero values f(m), m ∈ Z, of a nonconstant integral
polynomial f(x) are divisible by infinitely many primes.

2



Proof. Let

f(x) = anx
n + · · ·+ a1x+ a0, n ≥ 1, ai ∈ Z, an 6= 0.

The claim holds if a0 = 0. Suppose that a0 6= 0 and that S is a finite set of
primes. We find an m in Z such that f(m) is nonzero and is divisible by a prime
not in S. Let r be the product of the primes in S. For k in Z we have

f(kra0) = a0[an(kr)nan−1
0 + an−1(kr)n−1an−2

0 + · · ·+ a1kr + 1] = a0b.

The number b is 1 modulo r, hence is nonzero and not divisible by any prime
in S, and equals ±1 for at most 2n values of k. For any k distinct from these
values, the number f(kra0) = a0b 6= 0,−1, 1 and is divisible by a prime not in
S. 2

Proposition 1.1.2 For every prime q there are infinitely many primes p of the
form p = qn+ 1.

Proof. Fix a prime q. By Proposition 1.1.1 we know that the nonzero values
f(m), m ∈ Z, of the polynomial

f(x) = 1 + x+ x2 + · · ·+ xq−1 =
xq − 1
x− 1

are divisible by infinitely many primes p. We show that with a single exception
all these p are 1 modulo q. Consider m ∈ Z and a prime p dividing the value
f(m) 6= 0. If m ≡ 1 modulo p, then f(m) ≡ q modulo p and q ≡ 0 modulo p.
We get the exception p = q. If p 6= q, then m 6≡ 1 modulo p. The order of m
modulo p then equals q (it is a divisor of q because mq ≡ 1 modulo p but it is
not 1) and is a divisor of p− 1 (the order of an element divides the order of the
whole group, in this case (Z∗p, ·) with order p− 1). Thus p ≡ 1 modulo q. 2

We recall Euler’s analytic proof of the infinitude of primes and present its
extension, due also to Euler, to primes of the form 4n− 1 and 4n+ 1. For every
s > 1 one has the Euler identity

∏
p

1
1− 1/ps

=
∞∑
n=1

1
ns
.

For s → 1+ the sum of the series on the right goes to +∞ as its partial
sums approximate with arbitrary precision partial sums of the divergent se-
ries 1 + 1

2 + 1
3 + · · · . If p1, p2, . . . , pm were the only primes, the product on

the left would go to the finite value 1/(1− 1/p1)(1− 1/p2) . . . (1− 1/pm), which
contradicts the equality. Thus there are infinitely many primes. (This argument
can be simplified so that the variable s and the infinite product are avoided—see
Proposition 2.1.1.)
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Back to primes of the form 4n+ 1 and 4n− 1. We define mappings χ0 and
χ from Z to {−1, 0, 1} by χ0(2n) = χ(2n) = 0 and

χ0(2n+ 1) = 1 and χ(2n+ 1) = (−1)n

and consider, for real s, functions defined by the series

L(s, χ0) =
∞∑
n=1

χ0(n)
ns

= 1 +
1
3s

+
1
5s

+
1
7s

+
1
9s

+ · · ·

and

L(s, χ) =
∞∑
n=1

χ(n)
ns

= 1− 1
3s

+
1
5s
− 1

7s
+

1
9s
− · · · .

For s > 1 both series converge absolutely and for s → 1+ the sum of the first
series goes to +∞. For 0 < s ≤ 1 the second series converges conditionally (by
Leibniz test) and for s = 1 has clearly a positive sum

L(1, χ) = 1− 1
3

+
1
5
− 1

7
+

1
9
− · · ·

(equal, in fact, to π
4 ). Mappings χ0 and χ are completely multiplicative, for

every a, b ∈ Z one has

χ0(ab) = χ0(a)χ0(b) and χ(ab) = χ(a)χ(b).

It follows that L(s, χ0) and L(s, χ) have for s > 1 product representations

L(s, χ0) =
∏
p

1
1− χ0(p)/ps

and L(s, χ) =
∏
p

1
1− χ(p)/ps

.

Multiplying them we get (for s > 1)

L(s, χ0)L(s, χ) =
∏

p≡1 (4)

1
(1− 1/ps)2

∏
p≡−1 (4)

1
1− 1/p2s

.

By Euler’s identity, the second product is finite for s > 1
2 as it is majorized

by
∏
p(1 − p−2s)−1. Now let s → 1+. If there were only finitely many primes

of the form 4n + 1, the first product would go to a finite value too and the
right side would have a finite limit. But the left side has limit +∞ because
L(s, χ0)→ +∞ and L(s, χ) goes to a nonzero limit value L(1, χ). (We use that
L(s, χ) is continuous for s > 0. We establish this and other properties of L-
functions in the next section.) We get a contradiction and conclude that there
are infinitely many primes of the form 4n+ 1. The ratio of both products is

L(s, χ0)
L(s, χ)

=
∏

p≡−1 (4)

1 + 1/ps

1− 1/ps
.

For s→ 1+ the left side goes to +∞. However, the right side would have finite
limit if there were finitely many primes of the form 4n − 1. Hence there are
infinitely many of them.

In the next section we describe Dirichlet’s generalization of Euler’s argu-
ments from m = 4 to arbitrary modulus m.
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1.2 Proof of Dirichlet’s theorem

Suppose that G = (G, ·) is a finite abelian group, written multiplicatively, and
χ : G→ C is a mapping such that χ(ab) = χ(a)χ(b) for every a, b and χ(a) 6= 0
for some a. It follows that χ(1G) = 1 and that each value χ(a) lies on the
unit circle |z| = 1 and is an n-th root of unity, n = |G| being the order of G.
Such mappings are called characters of G and we write G∗ for their set. The
principal character χ0, χ0 ≡ 1, sends everything to 1. The set G∗ is endowed
with a multiplication: if χ and ψ are characters of G,

(χψ)(a) = χ(a)ψ(a), a ∈ G,

defines the character χψ of G. With this multiplication, G∗ is an abelian group,
the dual group of G. The principal character serves as a neutral element and the
inverse character is obtained by the complex conjugation, χ−1(a) = 1/χ(a) =
χ(a). The groups G and G∗ are actually isomorphic but we will not need this
(see the beginning of Section 1.4).

We denote by C(n) the class of cyclic groups of order n; these are the groups
of order n generated by a single element, isomorphic to the additive group
Zn = (Zn,+) of residues modulo n.

Proposition 1.2.1 Let n ∈ N and H,G be finite abelian groups.

1. If H is a subgroup of G and the factorgroup G/H is C(n), then every
character of H has exactly n extensions to a character of G. It follows
that

|G∗| = |G/H| · |H∗| = n|H∗|.

2. The dual group of the cyclic group C(n) is C(n).

Proof. 1. Suppose that χ ∈ H∗ extends to ψ ∈ G∗ and that the generator of
G/H is aH, a ∈ G. So an = b ∈ H and am 6∈ H for 0 < m < n. Every element
g ∈ G has a unique expression as g = akh with 0 ≤ k < n and h ∈ H. Since
ψ(g) = ψ(akh) = ψ(a)kχ(h), the extension ψ is determined by χ and by the
value ψ(a). From ψ(a)n = ψ(an) = χ(b) it follows that ψ(a) is an n-th root of
the number χ(b). It is easy to check that setting ψ(a) equal to any of these n
roots, we get a character ψ of G extending χ and that these n characters are
distinct. Also, every ψ ∈ G∗ is an extension of some χ ∈ H∗, namely of its
restriction to H. Thus |G∗| = n|H∗|.

2. Let G = C(n), with the generator a. By part 1 (for H = {1H} and
G = C(n)), |G∗| = n and G∗ has n elements χr, 0 ≤ r < n, where χr(a) =
exp(2πir/n). Since χrχs = χr+s mod n, G∗ = C(n)∗ is isomorphic to Zn and is
C(n). 2

Proposition 1.2.2 Let G be a finite abelian group.

1. The dual group G∗ has the same number of elements, |G∗| = |G|.
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2. If the element a ∈ G has order r, then the list

(χ(a) | χ ∈ G∗)

of all character values on a consists of the r-th roots of unity, each of them
repeated |G|/r times.

Proof. We prove parts 1 and 2 together. For r = 1 and a = 1G part 2 holds
trivially and therefore we assume that r > 1 and a 6= 1G. We set a1 = a
and G1 = 〈a1〉, the cyclic subgroup generated by a1 = a. If G1 6= G, we take
an element a2 ∈ G\G1 and set G2 = 〈G1 ∪ {a2}〉. Thus G2/G1 is cyclic and
|G2| > |G1|. Continuing this way, after finitely many steps (as |G| < +∞) we
obtain a chain of subgroups

{1G} = G0 ⊂ G1 ⊂ · · · ⊂ Gk = G

such that each factorgroup Gi+1/Gi is cyclic. Denoting ri = |Gi/Gi−1|, we have
|G| = |Gk| = rk|Gk−1| = rkrk−1|Gk−2| = · · · = rkrk−1 . . . r1. Hence, by part 1
of Proposition 1.2.1,

|G∗| = |G∗k| = rk|G∗k−1| = rkrk−1|G∗k−2| = · · · = rkrk−1 . . . r1 = |G|,

which proves part 1. G1 = C(r) has r characters and, since a generates G1,
their values on a give all r-th roots of unity, each of them once. Using again
the above chain of subgroups with cyclic factors and part 1 of Proposition 1.2.1,
we see that each character of G1 is a restriction of exactly r2r3 . . . rk = |G|/r
characters of G, which proves part 2. 2

Part 2 implies that for every a ∈ G, a 6= 1G, there is a ψ ∈ G∗ such that
ψ(a) 6= 1.

Proposition 1.2.3 Let G be a finite abelian group of order n, a ∈ G and
ψ ∈ G∗. Then∑

χ∈G∗
χ(a) =

{
n . . . a = 1G
0 . . . a 6= 1G

and
∑
x∈G

ψ(x) =
{
n . . . ψ = χ0

0 . . . ψ 6= χ0.

Also, if a, b ∈ G then ∑
χ∈G∗

χ(a)χ(b)−1 =
{
n . . . a = b
0 . . . a 6= b.

Proof. If a = 1G, resp. ψ = χ0, then the first, resp. the second, formula
holds trivially. If a 6= 1G, there is a ψ ∈ G∗ such that ψ(a) 6= 1 (part 2 of
Proposition 1.2.2). Denoting by S the sum in the first formula and changing
the summation variable χ to ψχ , we get the equation

S =
∑
χ∈G∗

χ(a) =
∑
χ∈G∗

ψχ(a) =
∑
χ∈G∗

ψ(a)χ(a) = ψ(a)S.
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Thus S = 0, because ψ(a) 6= 1. If χ 6= χ0, in the second formula we argue in
a similar way, changing the summation variable x to ax where a ∈ G satisfies
χ(a) 6= 1. Finally, the third formula follows from the first upon noting that
χ(a)χ(b)−1 = χ(ab−1). 2

For m ∈ N, we consider the multiplicative group

G(m) = Z∗m = (Z∗m, ·)

of the residues modulo m coprime to m. Recall that its order equals

ϕ(m) = m
∏
p|m(1− p−1)

(Euler function). We pull every character χ ∈ G(m)∗ back to the function
χ : Z→ C (denoted by the same symbol),

χ(a) =
{

0 . . . (a,m) > 1
χ(a mod m) . . . (a,m) = 1.

The complete multiplicativity χ(ab) = χ(a)χ(b) remains preserved. These mul-
tiplicative mappings χ : Z → C, associated with the characters of G(m), are
called modular characters. If χ is non-principal, by the second formula in Propo-
sition 1.2.3 we have that χ(k) + χ(k + 1) + · · · + χ(k + m − 1) = 0 for every
k ∈ N and hence

|χ(k) + χ(k + 1) + · · ·+ χ(k + l)| ≤ m− 1

for every k, l ∈ N. (In fact, this holds even with ϕ(m) in place of m− 1.)
For real s and a modular character χ, we consider the series

L(s, χ) =
∞∑
n=1

χ(n)
ns

.

In the domain of convergence it defines (in general complex-valued) function
L(s, χ), Dirichlet’s L-function. We shall work with L(s, χ) only as functions of
real variable s.

Lemma 1.2.4 Let a1, a2, . . . , an be complex numbers and b1 ≥ b2 ≥ · · · ≥ bn ≥
0 be real numbers. Then

|a1b1 + a2b2 + · · ·+ anbn| ≤ b1 max
m=1,2,...,n

|a1 + a2 + · · ·+ am|.

Proof. We set Am = a1 + a2 + · · · + am, A0 = bn+1 = 0, and transform the
sum as

n∑
i=1

aibi =
n∑
i=1

(Ai −Ai−1)bi =
n∑
i=1

Ai(bi − bi+1).

7



Then∣∣∣∣∣
n∑
i=1

aibi

∣∣∣∣∣ ≤
n∑
i=1

|Ai|(bi − bi+1) ≤ max
m
|Am| ·

n∑
i=1

(bi − bi+1) = b1 max
m
|Am|.

2

Proposition 1.2.5 Let χ be a modular character of G(m).

1. The series L(s, χ) converges absolutely for s > 1.

2. If χ is non-principal, then L(s, χ) converges conditionally for s > 0 and
L(s, χ) is a continuous function for s > 0.

3. For the principal character, L(s, χ0)→ +∞ as s→ 1+.

4. For s > 1 one has the Euler product representation

L(s, χ) =
∏
p

1
1− χ(p)/ps

.

5. L(s, χ) 6= 0 for s > 1.

Proof. 1. This is immediate from |χ(n)n−s| = n−s and from the fact that the
series

∑
n−s converges for s > 1.

2. We know that non-principal χ satisfies |χ(k) +χ(k+ 1) + · · ·+χ(k+ l)| ≤
m− 1 for every k, l ∈ N. Using Lemma 1.2.4 with an = χ(n) and bn = n−s, we
get that for every k, l ∈ N, ∣∣∣∣∣

k+l∑
n=k

χ(n)
ns

∣∣∣∣∣ ≤ m− 1
ks

.

It follows that L(s, χ) converges for s > 0 and that it converges uniformly for
s > δ > 0. It is a sum of continuous functions χ(n)n−s and therefore it is
continuous for s > 0.

3. If s > 1 and χ = χ0, we have

L(s, χ0) =
∑

n, (n,m)=1

1
ns
.

For s → 1+, L(s, χ0) → +∞ because the partial sums approximate with arbi-
trary precision partial sums of the series

∑
n, (n,m)=1 1/n. This series is divergent

because it includes as a subseries the divergent series 1+ 1
m+1+ 1

2m+1+ 1
3m+1+· · · .

4. For s > 1 and P ∈ N, we consider the finite product

S(P ) =
∏
p≤P

1
1− χ(p)/ps

=
∏
p≤P

∞∑
k=0

χ(p)k

pks
.
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Multiplying the finitely many geometric series, we see that

S(P ) =
∗∑ χ(n)

ns

where ∗ signifies summation over n ∈ N not divisible by any prime larger than
P . Denoting by ∗∗ the summation over n ∈ N divisible by at least one prime
larger than P , we therefore have

|L(s, χ)− S(P )| =

∣∣∣∣∣
∗∗∑ χ(n)

ns

∣∣∣∣∣ ≤∑
n>P

1
ns

<

∫ +∞

P

dt

ts
=

1
(s− 1)P s−1

.

Thus S(P )→ L(s, χ) as P →∞.
5. For principal χ this is clear as L(s, χ0) is a sum of positive numbers. In

general this follows from the Euler product in part 4. Let s > 1. To prove that
L(s, χ) 6= 0, it suffices to show that there is a c ∈ R such that

log

∣∣∣∣∣∣
∏
p≤x

1
1− χ(p)p−s

∣∣∣∣∣∣ = −
∑
p≤x

log |1− χ(p)p−s| > c

holds for every x > 0. But log |1− χ(p)p−s| < log(1 + |χ(p)p−s|) < |χ(p)p−s| =
p−s. Hence the inequality holds for every x > 0 with c = −

∑
n−s. 2

Thus L(s, χ) is defined on (1,+∞) and for non-principal χ on (0,+∞). However,
for Dirichlet’s theorem we will need L(s, χ) only for s ∈ [1, 1 + δ) for some δ > 0
and never for s < 1. This contrasts with the proof of the PNT in the next
chapter where the values of ζ(s) (= L(s, χ0) for m = 1) in certain s ∈ C with
Re(s) < 1 are crucial, which agrees with the stronger conclusion of the PNT
compared to that of Dirichlet’s theorem. Part 5 also follows from the fact that
the product

∏
χ∈G(m)∗ L(s, χ) is a positive real number (Proposition 1.3.2).

For Dirichlet’s theorem we need to extend the nonvanishing of L(s, χ) to
s = 1. We postpone the proof of this crucial result to Section 1.3.

Theorem 1.2.6 L(1, χ) 6= 0 for every non-principal modular character χ.

Using complex logarithm, we extract from the infinite product L(s, χ)−1 =∏
p(1−χ(p)/ps) the series

∑
p χ(p)/ps. We recall complex logarithm and in the

next proposition establish required properties.
For a number z ∈ C\{0}, where z = |z| exp(i arg z) has the normalized

argument arg z in [−π, π), we define

log z = log |z|+ i arg z,

log |z| being the real logarithm. This complex logarithm log : C\{0} → C
extends the standard real logarithm log : R+ → R and behaves more or less
like it. However, continuity and the identity log(z1z2) = log z1+log z2 in general
hold only with the correction term 2πi.
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Proposition 1.2.7 Let log z : C\{0} → C be the specified complex logarithm.

1. Function log z is continuous on C\(−∞, 0].

2. For every n-tuple of nonzero numbers z1, z2, . . . , zn ∈ C there is a k ∈ Z
such that

log(z1z2 . . . zn) = log z1 + log z2 + · · ·+ log zn + 2kπi.

3. If an are in C and a =
∏∞
n=1 an 6= 0, then

log a =
∞∑
n=1

log an + 2kπi

for some k ∈ Z.

4. For z near 0, log(1 + z) = z +O(z2).

5. Function log z is holomorphic on C\(−∞, 0] because (log z)′ = z−1 for
every z ∈ C\(−∞, 0].

6. For every z ∈ C with |z| < 1,

log(1 + z) =
∞∑
n=1

(−1)n−1zn

n
and log(1− z)−1 =

∞∑
n=1

zn

n
.

7. Consequently, | log(1 + z)− z| ≤ |z|2 for |z| ≤ 1
2 .

Proof. 1. Clear from the definition.
2. It suffices to prove the identity for n = 2. If zj = |zj | exp(iϕj) with

ϕj ∈ [−π, π), j = 1, 2, then

z1z2 = (|z1| · |z2|) exp(i(ϕ1 + ϕ2)), ϕ1 + ϕ2 ∈ [−2π, 2π)

(by the properties of the complex exponential). Thus also

z1z2 = (|z1| · |z2|) exp(iϕ), ϕ ∈ [−π, π),

where ϕ = ϕ1 +ϕ2 + 2kπ with k = −1, 0 or 1. The identity then follows by the
definition of log and the identity log(|z1| · |z2|) = log |z1| + log |z2| for the real
logarithm.

3. We assume first that a 6∈ (−∞, 0]. For every large n, a1a2 . . . an is near
a and, since a 6= 0, an is near 1. We fix an ε, 0 < ε < 1. By part 1, there is
an N ∈ N such that for every n ≥ N we have | log a− log(a1a2 . . . an)| < ε and
| log an| < ε. Thus, by part 2, for n ≥ N we have

log a = log(a1a2 . . . an) + cn =
n∑
j=1

log aj + 2knπi+ cn

10



where kn ∈ Z and |cn| < ε < 1. These equalities give

|kn+1 − kn| ≤
| log an+1|+ |cn|+ |cn+1|

2π
<

3ε
2π

< 1

and we conclude that kN = kN+1 = kN+2 = · · · = k. This conclusion holds
for any 0 < ε < 1 and the same argument shows that the stabilized value k is
independent of ε (but N of course depends on it). Taking ε → 0, we get the
equality.

If a ∈ (−∞, 0), we apply the previous case to −a and get

πi+ log a = log(−a) = log(−1) +
∞∑
n=1

log an + 2kπi

for some k ∈ Z. Since log(−1) = −πi, by rearrangement we have log a =∑∞
n=1 log an + 2(k − 1)πi.
4. Let z = a+ bi with a, b ∈ R close to 0. Then

| log(1 + z)− z| ≤ | log |1 + z| − a|+ | arg(1 + z)− b|
= |log(1 + x)− a|+ |arctan y − b|

where x =
√

(1 + a)2 + b2 − 1, y = b/(1 + a).

For a, b→ 0, we have x = a+O(a2 + b2), y = b+O(ab), log(1 +x) = x+O(x2),
and arctan y = y +O(y3). Thus log(1 + z)− z = O(a2 + b2 + ab) = O(|z|2).

5. We fix a z ∈ C\(−∞, 0]. For every u ∈ C sufficiently close to 0, we have
z + u ∈ C\(−∞, 0]. Applying on the product z + u = z(1 + uz−1) the identity
in part 2 and using the estimate in part 4, for u→ 0 we get the equality

log(z + u)− log z = log(1 + uz−1) + 2k(u) · πi = uz−1 + 2k(u) · πi+O(|u|2)

with some k(u) ∈ Z. The continuity of log at z shows that k(u) ≡ 0. Thus

(log z)′ = lim
u→0

(log(z + u)− log z)u−1 = z−1.

6. This follows from the theory of holomorphic functions. Functions log(1 +
z) and log(1 − z)−1 are holomorphic for |z| < 1 and have there derivatives
(log(1+z))(k) = (−1)k−1(k−1)!(1+z)−k and (log(1−z)−1)(k) = (k−1)!(1−z)−k.
The two expansions are their Taylor series centered at z = 0.

7. For |z| ≤ 1
2 the first expansion gives

| log(1 + z)− z| ≤ (1/2)
∞∑
n=2

|z|n =
|z|2

2(1− |z|)
≤ |z|2.

2

The nuisance with discontinuity of log z in negative real points can be usually
circumvented by multiplying z in advance by −1 as, for example, in the proof of
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part 3 or in the next proof. Part 5 and the expansions in part 6 will be needed
only in the next chapter. In the next proof we use the estimate from part 7,
which was derived by the theory of holomorphic functions, but we could get an
elementary and fully sufficient estimate | log(1 + z)− z| < c|z|2 for some c > 0
simply by obtaining via the mean value theorem explicit constants in the big
O’s in the proof of part 4. The Taylor expansion of log(1 + z) and Lemma 1.2.4
give the more general inequality | log(1 + z) − z| ≤ |z|2/|1 + z| that holds for
every |z| < 1.

The following result is the cornerstone in the proof of Dirichlet’s theorem.

Proposition 1.2.8 If χ is a non-principal modular character, then∑
p

χ(p)
ps

= O(1) as s→ 1+.

For the principal character χ0, the sum goes to +∞.

Proof. We define ∆(z) by log(1+z) = z+∆(z). For every s > 1 and character
χ, ∑

p

log(1− χ(p)/ps) = −
∑
p

χ(p)
ps

+
∑
p

∆(−χ(p)/ps).

By part 7 of Proposition 1.2.7, |∆(−χ(p)/ps)| ≤ p−2s. The sum of logarithms
is a sum of continuous functions (part 1 of Proposition 1.2.7) and converges
uniformly for s > 1 + δ > 1, as shown by the last two sums. Therefore it defines
on s > 1 a continuous function. The last sum is bounded for s > 1 because it
converges absolutely for s > 1

2 . Hence it suffices to show that for s → 1+ the
sum

∑
p log(1− χ(p)/ps) is bounded if χ 6= χ0 and goes to −∞ if χ = χ0.

Let s > 1. We take logarithm of the reciprocal of the infinite product in part
4 of Proposition 1.2.5, which we can do by part 5. By part 3 of Proposition 1.2.7,

log(L(s, χ)−1) =
∑
p

log(1− χ(p)/ps) + 2k(s) · πi, k(s) ∈ Z.

If χ = χ0 then L(s, χ0) > 0 for every s > 1, the equality holds with the real
logarithm and k(s) = 0. For s → 1+, log(L(s, χ0)−1) → −∞ by part 3 of
Proposition 1.2.5 and the sum of logarithms goes to −∞ as well.

If χ 6= χ0 and L(1, χ) 6∈ (−∞, 0], by the continuity of L(s, χ) we have
L(s, χ) 6∈ (−∞, 0] for every s ∈ [1, 1 + δ) for some δ > 0. Thus log(L(s, χ)−1) is
continuous on [1, 1 + δ) and hence bounded for s→ 1+. The sum of logarithms
is continuous on (1, 1+δ) and so k(s) = k is a constant independent of s. Hence∑
p log(1− χ(p)/ps) is bounded for s→ 1+.
It remains to deal with the case χ 6= χ0 and L(1, χ) ∈ (−∞, 0), the case

L(1, χ) = 0 being excluded by Theorem 1.2.6. We take logarithm of the infinite
product for (−1)L(s, χ)−1 and get

log(−L(s, χ)−1) =
∑
p

log(1− χ(p)/ps) + 2(k(s)− 1/2) · πi, k(s) ∈ Z.
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As −L(1, χ)−1 > 0, the function log(−L(s, χ)−1) is continuous on [1, 1 + δ) and
as before k(s) is constant and

∑
p log(1− χ(p)/ps) bounded for s→ 1+. 2

Proof of Dirichlet’s theorem. Let a ∈ Z and m ∈ N satisfy (a,m) = 1
and let s > 1. By the third formula in Proposition 1.2.3, summation over all
characters χ of G(m) gives the identity∑

χ

χ(a)−1
∑
p

χ(p)
ps

=
∑
p

∑
χ

χ(p)χ(a)−1

ps
= ϕ(m)

∑
p≡a (mod m)

1
ps
.

If there were finitely many primes of the form mn + a, the last sum would be
finite and thus bounded for s → 1+. However, by Proposition 1.2.8 the initial
expression is unbounded as s → 1+, because

∑
p
χ(p)
ps → +∞ if χ = χ0 and all

other sums with χ 6= χ0 are bounded. This contradiction shows that there are
infinitely many primes of the form mn+ a. 2

1.3 Nonvanishing of L(1, χ)

To complete the proof of Dirichlet’s theorem, we prove that L(1, χ) 6= 0 for non-
principal χ (Theorem 1.2.6). We sketch another proof in Section 1.5. For yet
another proof see [25]. We begin with refining our findings about the behaviour
of L-functions near 1.

Proposition 1.3.1 Let χ be a modular character of G(m) and s→ 1+.

1. If χ = χ0, L(s, χ0) = (c+ o(1))(s− 1)−1 where c =
∏
p|m(1− 1/p) > 0.

2. If χ 6= χ0, L(s, χ) = c+O(s− 1) where c = L(1, χ).

Proof. 1. Let s > 1. Since

1
s− 1

=
∫ +∞

1

dt

ts
< ζ(s) =

∞∑
n=1

1
ns

< 1 +
∫ +∞

1

dt

ts
= 1 +

1
s− 1

and

L(s, χ0) =
∏

(p,m)=1

1
1− 1/ps

=
∏
p|m

(1− 1/ps)
∏
p

1
1− 1/ps

=
∏
p|m

(1− 1/ps) · ζ(s)

(by part 4 of Proposition 1.2.5), the asymptotic relation follows.
2. Let χ 6= χ0. For x ≥ 1 and s ∈ ( 1

2 ,
3
2 ), we consider the function f(x, s)

defined by

x−s − x−1 = (s− 1)f(x, s) for s 6= 1, f(x, 1) = −x−1 log x.

For each fixed s, f(x, s) → 0 as x → +∞. Taking the Taylor expansion of
x−s − x−1 at s = 1 with remainder in the Lagrange form, we get that f(x, s) =
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−x−1 log x+ 1
2 (s− 1)x−t(log x)2 where t lies between 1 and s. Thus, for every

x ≥ 1 and s ∈ ( 1
2 ,

3
2 ),

|f(x, s)| ≤ log x
x

+
(log x)2

4
√
x

< K

with an absolute constant K > 0. For s 6= 1, the partial derivative by x is

fx(x, s) =
1− s/xs−1

(s− 1)x2
.

We see that for fixed s ∈ ( 1
2 ,

3
2 ), s 6= 1, the function fx(x, s) changes sign only

once at xs = s1/(s−1) and f(x, s) is increasing in x on [xs,+∞); the same holds
for f(x, 1) = −x−1 log x, with x1 = e. We estimate xs. From

log xs =
log(1 + (s− 1))

s− 1
=
∞∑
k=1

(1− s)k−1

k
< 1 +

1
2

∑
k≥1

(1/2)k =
3
2

we get that 0 < xs < exp(3/2) < 5. We have

L(s, χ)− L(1, χ) =
∞∑
n=1

χ(n)(n−s − n−1) = (s− 1)
∞∑
n=1

χ(n)f(n, s).

Using the properties of f(x, s) and, for n ≥ 5, Lemma 1.2.4 with an = −χ(n)
and bn = −f(n, s), we see that for s ∈ ( 1

2 ,
3
2 ) the last series converges and its

sum is uniformly bounded:∣∣∣∣∣
∞∑
n=1

χ(n)f(n, s)

∣∣∣∣∣ ≤ 4K +

∣∣∣∣∣
∞∑
n=5

χ(n)f(n, s)

∣∣∣∣∣ ≤ 4K +K(m− 1).

So L(s, χ) = L(1, χ) +O(s− 1) as s→ 1+. 2

Proposition 1.3.2 Let m ∈ N. For s > 1 we have∏
χ∈G(m)∗

L(s, χ) =
∏

p, (p,m)=1

(
1

1− p−f(p)s

)g(p)
≥

∑
n, (n,m)=1

1
nϕ(m)s

≥ 1

where f(p) is the order of p modulo m and g(p) = |G(m)|/f(p) = ϕ(m)/f(p).
In particular, the product

∏
χ∈G(m)∗ L(s, χ) is a positive real number.

Proof. If A is the set of all k-th roots of unity, then
∏
α∈A(1− αx) = 1− xk,

by the factorization xk − 1 =
∏
α∈A(x− α). Using part 4 of Proposition 1.2.5,

part 2 of Proposition 1.2.2 and this identity with α = χ(p) and x = 1/ps, we
express

∏
χ L(s, χ) as

∏
χ

∏
p

1
1− χ(p)/ps

=
∏
p

∏
χ

1
1− χ(p)/ps

=
∏
p

(
1

1− (1/ps)f(p)

)g(p)
,
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which proves the equality. The inequality follows upon expanding the factors
1/(1− 1/pf(p)s) into geometric series and multiplying them. 2

For our purposes it suffices to know that
∏
χ L(s, χ) ≥ 1 for s > 1, which is

clear already from the equality.
G(m)∗ partitions into the pairs of characters {χ, χ−1} with χ 6= χ−1 and the

singletons {χ} with χ = χ−1. Since χ−1 = χ, the former complex characters
attain at least one nonreal value, while the latter real characters have only real
values −1, 1 (and 0 in the modular version).

Corollary 1.3.3 If χ is a complex character of G(m), then L(1, χ) 6= 0.

Proof. Suppose that L(1, χ) = 0 for a complex character χ modulo m. Since
χ−1(n) = χ(n), we have also L(1, χ−1) = L(1, χ) = 0. Thus∏

χ∈G(m)∗

L(s, χ) = O(s− 1) for s→ 1+

because the unbounded factor L(s, χ0) = (c + o(1))/(s − 1) is overturn by the
two factors L(s, χ) = O(s− 1), L(s, χ−1) = O(s− 1) and the other factors are
bounded (Proposition 1.3.1). This contradicts the inequality∏

χ∈G(m)∗

L(s, χ) ≥ 1 for s > 1

following from Proposition 1.3.2. 2

It remains to prove that L(1, χ) is nonzero if χ is a (non-principal) real
character. We establish this by a clever application of Lemma 1.2.4. For it we
need monotonicity of certain coefficients.

Lemma 1.3.4 For n ∈ N and t ∈ [0, 1), let

bn = bn(t) =
1

n(1− t)
− tn

1− tn
.

Then b1 = 1 and b1 ≥ b2 ≥ b3 ≥ · · · ≥ 0.

Proof. Clearly, b1 = 1 and bn → 0 for n→∞. Monotonicity and nonnegativity
of bn then follow from the inequality bn − bn+1 ≥ 0, which is a corollary of the
inequality (a1 + a2 + · · · + ak)/k ≥ (a1a2 . . . ak)1/k (for every ai ≥ 0) between
the arithmetic and geometric mean:

(1− t)(bn − bn+1) =
1
n
− 1
n+ 1

− tn

1 + t+ · · ·+ tn−1
+

tn+1

1 + t+ · · ·+ tn

=
1

n(n+ 1)
− tn

(1 + t+ · · ·+ tn−1)(1 + t+ · · ·+ tn)
≥ 0
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because 1 + t+ t2 + · · ·+ tn−1 ≥ n(t1+2+···+(n−1))1/n = nt(n−1)/2 ≥ ntn/2 and,
similarly, 1+ t+ t2 + · · ·+ tn ≥ (n+1)tn/2, by the mentioned inequality between
means. 2

Proposition 1.3.5 L(1, χ) 6= 0 for every real non-principal character of G(m).

Proof. Let χ ∈ G(m)∗, m > 1 and χ 6= χ0, be a real character with L(1, χ) = 0.
We derive a contradiction. For t ∈ [0, 1), we start with the identity

∞∑
n=1

χ(n)tn

1− tn
=
∞∑
n=1

χ(n)
∞∑
k=1

tkn =
∞∑
n=1

tn
∑
d|n

χ(d)

(we can exchange the order of summation because the first series absolutely
converges). Thus, setting cn =

∑
d|n χ(d), we have for the generating function

f(t) of the numbers cn for every t ∈ [0, 1) two expressions:

f(t) =
∞∑
n=1

cnt
n =

∞∑
n=1

χ(n)tn

1− tn
.

We let t→ 1− and derive two contradictory estimates: f(t)→ +∞ by the first
expression but, assuming L(1, χ) = 0, f(t) = O(1) by the second expression.

If n ∈ N and n = pa1
1 . . . parr is the prime factorization, then

cn =
∑
d|n

χ(d) =
r∏
i=1

∑
d|paii

χ(d) =
r∏
i=1

(1 + χ(pi) + χ(pi)2 + · · ·+ χ(pi)ai).

Since the sequence
χ(pi), χ(pi)2, χ(pi)3, χ(pi)4, . . .

is 0, 0, 0, 0, . . . (if pi divides m) or 1, 1, 1, 1, . . . or −1, 1,−1, 1, . . . , we see that
cn ≥ 0 for every n because every factor is nonnegative and that ck2 ≥ 1 for
every k ∈ N. Thus f(t) =

∑∞
n=1 cnt

n → +∞ as t → 1−, because all cn are
nonnegative and infinitely many of them are at least 1.

Using that 0 = L(1, χ) =
∑
n≥1 χ(n)/n and f(t) =

∑
n≥1 χ(n)tn/(1 − tn)

we write, for t ∈ [0, 1),

−f(t) =
0

1− t
− f(t) =

∞∑
n=1

χ(n)
(

1
n(1− t)

− tn

1− tn

)
.

By Lemma 1.3.4, Lemma 1.2.4 with the choice an = χ(n) and bn = 1/n(t−1)−
tn/(1− tn) gives estimate

|f(t)| =

∣∣∣∣∣
∞∑
n=1

χ(n)bn

∣∣∣∣∣ ≤ b1(m− 1) = m− 1 for t ∈ [0, 1).

This is a contradiction. 2

The proof of Dirichlet’s theorem is now complete.
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1.4 Decomposition of Z∗m into cyclic groups

This section is a remnant from the previous drafts and is not needed for the
proof of Dirichlet’s theorem but we hope that it is of some interest. We derive
a decomposition of the group G(m) = Z∗m into cyclic subgroups, described in
Theorem 1.4.1 below.

Recall that the dual of any cyclic group G is isomorphic to G. It is easy
to see that for two finite abelian groups G and H, (G ⊕ H)∗ is isomorphic to
G∗ ⊕H∗. As G(m) is, by the theorem below, a direct product of cyclic groups,
not only |G(m)∗| = |G(m)| but G(m)∗ is isomorphic to G(m). More generally,
G∗ is isomorphic to G for any finite abelian group G because any such group is
a direct product of cyclic groups (see, e.g., Lang [26, Theorem 8.2 in Chapter
1]).

Theorem 1.4.1 Let m = pe11 p
e2
2 . . . perr be the prime decomposition of m ∈ N.

1. The group G(m) is isomorphic to the direct product

G(pe11 )⊕G(pe22 )⊕ · · · ⊕G(perr ).

2. If p > 2 or if e ≤ 2, then G(pe) is cyclic, G(pe) = C((p− 1)pe−1).

3. For e ≥ 3, G(2e) is not cyclic but is a direct product of two cyclic groups,
G(2e) = C(2)⊕ C(2e−2).

The decomposition in part 1 follows from the Chinese remainder theorem, which
we now recall.

Theorem 1.4.2 Let m1,m2, . . . ,mr ∈ N be pairwise coprime numbers and
Ri = (Zmi ,+, ·) and R = (Zm,+, ·) be the rings of residue classes modulo
mi, i = 1, 2, . . . , r, and m = m1m2 . . .mr. The mapping

R→ R1 ⊕R2 ⊕ · · · ⊕Rr, a 7→ (a mod m1, a mod m2, . . . , a mod mr)

is a ring isomorphism.

Proof. It is easy to check that this mapping sends 1 to 1, 0 to 0, and preserves
addition and multiplication. It is injective, because a 7→ (0, . . . , 0) means that
a is 0 modulo every mi, which implies, by the coprimality of mi, that a is 0
modulo m1m2 . . .mr. It is also surjective, the domain and the range are finite
sets with equal cardinalities: m = |R| = |R1 ⊕ · · · ⊕Rr| = m1m2 . . .mr. 2

Consequently, this mapping gives an isomorphism of the group of units G(m)
of R and the group of units G(m1)⊕ · · · ⊕G(mr) of R1 ⊕ · · · ⊕Rr.

We proceed to part 2 of Theorem 1.4.1 and start with the case e = 1. We
need an elementary identity for the function ϕ(m) counting numbers 1, 2, . . . ,m
coprime with m.
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Proposition 1.4.3 For every n ∈ N,∑
d|n

ϕ(d) = n.

Proof. If we partition [n] by the equivalence relation i ∼ j ⇐⇒ (n, i) =
(n, j) = d, then the blocks are in a 1-1 correspondence with divisors d of n and
the block corresponding to d has ϕ(n/d) elements. 2

Proposition 1.4.4 For every prime p, the group G(p) is cyclic and G(p) =
C(p− 1).

Proof. We consider the field Fp = (Zp,+, ·) of residues modulo p. For x in
F∗p = Fp\{0} we denote ord(x) the order of x in the group G(p) = (F∗p, ·). This
is a divisor of |G(p)| = p − 1. For d dividing p − 1, we let Hd denote the set
of x in F∗p with ord(x) = d. We prove that |Hd| = 0 or |Hd| = ϕ(d). Then the
equality ∑

d|(p−1)

|Hd| = |G(p)| = p− 1

and the previous identity show that in fact always |Hd| = ϕ(d). In particular,
|Hp−1| = ϕ(p − 1) > 0 and there is at least one element with the maximum
order p− 1, generating G(p).

The bound on |Hd| follows from an interplay with the set Td of x in F∗p such
that xd = 1. We have Hd ⊂ Td, and |Td| ≤ d because Td consists of the roots
of the polynomial xd − 1. Suppose that |Hd| > 0 and fix an α ∈ Hd. Since
ord(α) = d, all d powers α, α2, . . . , αd are distinct. All are elements of Td and
hence |Td| = d and Td = {α, α2, . . . , αd}. From Hd ⊂ Td it follows that every
element β ∈ Hd is of the form β = αi for some i, 1 ≤ i ≤ d. Also, αi ∈ Hd if
and only if (i, d) = 1. Thus Hd 6= ∅ implies |Hd| = ϕ(d). 2

This proof works without change for any finite field Fpe and shows that the
multiplicative group F∗pe is cyclic.

For the proof that G(pe) is cyclic for e ≥ 2, we need some simple results on
congruences.

Proposition 1.4.5 In the following, p is a prime, e, k ∈ N, and a, b ∈ Z.

1. Every binomial coefficient
(
p
k

)
with 0 < k < p is a multiple of p.

2. If a ≡ b modulo pe, then ap ≡ bp modulo pe+1.

3. If p > 2 and e ≥ 2 then (1 + ap)p
e−2 ≡ 1 + ape−1 modulo pe.

4. If p > 2 and p does not divide a, then the order of 1+ap in G(pe) is pe−1.
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Proof. 1. This is immediate from
(
p
k

)
= p!

k!(p−k)! .
2. We have a = b+ pec for some c ∈ Z. By the binomial theorem,

ap = (b+ pec)p = bp +
(
p

1

)
bp−1(cpe)1 +A ≡ bp (mod pe+1)

because every term in the sum A is divisible by p2e and thus by pe+1.
3. For e = 2 this holds as equality. Suppose this congruence holds for e.

Raising it to the power p, part 2 gives

(1 + ap)p
e−1
≡ (1 + ape−1)p = 1 +

(
p

1

)
ape−1 +A (mod pe+1),

where every term in the sum A but the last is divisible by p1+2(e−1) (1 comes
from the binomial coefficient by part 1) and thus by pe+1 (because e ≥ 2). The
last term in A is divisible by pp(e−1) and thus also by pe+1 (because p ≥ 3, here
p = 2 fails). Hence (1 + ap)p

e−1 ≡ 1 +
(
p
1

)
ape−1 = 1 + ape modulo pe+1.

4. It suffices to prove that the pe−1-th power of 1 + ap is 1 modulo pe but
the pe−2-th power is not. But this is clearly so by the congruence in part 3,
applied with e+ 1 and e, respectively. 2

Proposition 1.4.6 For every prime p > 2 and e ∈ N, the group G(pe) is cyclic.

Proof. Let g be the generator of G(p), which exists by Proposition 1.4.4. This
means that gp−1 ≡ 1 modulo p but gi 6≡ 1 modulo p for every 0 < i < p−1. We
may assume that gp−1 6≡ 1 modulo p2. (Otherwise we replace g with g+p, which
is still a generator of G(p), and then (g+ p)p−1 ≡ gp−1 + (p− 1)gp−2p (mod p2)
by the binomial theorem and 1 + (p − 1)gp−2p 6≡ 1 (mod p2).) We show that
this g is a generator of G(pe).

Let gn ≡ 1 (mod pe), we need to show that then ϕ(pe) = (p−1)pe−1 divides
n. We write gp−1 = 1 + ap where a ∈ Z is not divisible by p. Since

1 ≡ (gn)p−1 = (gp−1)n = (1 + ap)n (mod pe),

part 4 of Proposition 1.4.5 tells us that pe−1 divides n. We write n = pe−1m.
Since gp ≡ g modulo p (the little theorem of Fermat or from gp−1 ≡ 1 modulo
p),

1 ≡ gn = (gp
e−1

)m ≡ gm (mod p).

Thus p− 1 divides m, since g generates G(p), and pe−1(p− 1) divides n. 2

It remains to prove part 3 of Theorem 1.4.1. (The case p = 2 and e = 2 is
trivial, G(22) = C(2).)

Proposition 1.4.7 Let e ∈ N, e ≥ 3.

1. The number 5 has in G(2e) order 2e−2.
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2. The 2e−1 odd numbers

M = {(−1)a5b | a = 0, 1 and 0 ≤ b < 2e−2}

are pairwise noncongruent modulo 2e. Hence G(2e) = C(2)⊕ C(2e−2).

Proof. 1. We show that 52e−3 ≡ 1 + 2e−1 modulo 2e. This congruence, applied
with e+ 1 and e, proves the claim on order of 5. For e = 3 it holds as equality.
Suppose it holds for some e ≥ 3. Squaring it, we get 52e−2 ≡ (1+2e−1)2 modulo
2e+1 (by part 2 of Proposition 1.4.5). But this is 1+2e+22e−2 ≡ 1+2e modulo
2e+1 (since e ≥ 3).

2. Suppose that (−1)a5b ≡ (−1)a
′
5b
′

modulo 2e, with a, a′, b, b′ in the stated
ranges. Modulo 4 this gives that (−1)a ≡ (−1)a

′
and a and a′ have the same

parity, so a = a′. Thus 5b ≡ 5b
′

modulo 2e. By part 1, b− b′ is divisible by 2e−2

and b = b′. The elements of M are therefore mutually noncongruent modulo 2e.
They are all coprime with 2e and |M | = ϕ(2e) = 2e−1. So under multiplication
modulo 2e, M is isomorphic to G(2e). On the other hand, the form of elements
in M shows that the group M is also isomorphic to C(2)⊕ C(2e−2). 2

This completes the proof of Theorem 1.4.1.
We conclude this section by a characterization of m with cyclic group G(m).

The generators of G(m), if they exist, are called primitive roots modulo m.

Corollary 1.4.8 The modulus m ∈ N has a primitive root if and only if m is
one of the numbers 2, 4, pe, 2pe, for a prime p > 2 and e ∈ N.

Proof. In the stated cases m has a primitive root because G(2) = C(1) and
G(4) = C(2), and, by Theorem 1.4.1, G(pe) = C((p − 1)pe−1) and G(2pe) is
isomorphic to G(2) ⊕ G(pe) = G(pe). If m is not in the stated form, Theo-
rem 1.4.1 shows that G(m) is a direct product of several cyclic groups, of which
at least two have even order. Thus G(m) has at least two elements of order
2 and therefore cannot be cyclic (any cyclic group has at most one element of
order 2). 2

1.5 Remarks

The proof of Dirichlet’s theorem in the case p = qn + 1 in Section 1.1 is taken
from Iwaniec and Kowalski [22, Chapter 2.3]. Bateman and Low [6] extend
the argument for p = 4n + 1 based on quadratic residues to the cases p =
24n + 1, 5, 7, 11, 13, 17, 19, 23. Section 1.2 was inspired by Serre [43, Chapter
VI]; later I found on the Internet presentation by Chapman [9] along similar
lines. The proof of L(1, χ) 6= 0 for real χ in Section 1.3 is due to Monsky
[28], who simplified an argument given by Gelfond and Linnik [16, Chapter 3.2].
Section 1.4 follows the textbook of Ireland and Rosen [21, Chapters 3 and 4].

I included Proposition 1.2.7 on complex logarithm in order to keep the proof
of Dirichlet’s theorem self-contained and explicit. Study of several renderings of
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Dirichlet’s theorem in the literature has shown me that the (lack of) justification
of the step

L(s, χ) =
∏
p

1
1− χ(p)p−s

; logL(s, χ) =
∑
p

log(1− χ(p)p−s)−1 = · · ·

is often problematic (e.g., see [43, p. 74]). We stress that as far as this step
is employed and log z with complex argument is invoked, the proof cannot be
regarded as only real variable proof (cf. [9]).

My translation of the opening quotation from Dirichlet’s memoir:

Careful inspection of the sequence of prime numbers reveals multi-
tude of its properties, whose general validity can be established by
repeated checks to any degree of certainty, while quest for a proof
that should fulfil all requirements of exactness meets with highest
difficulties. (. . . ) Only after having completely abandoned search
in the direction started by Legendre, did I arrive at a fully rigor-
ous proof of the theorem about arithmetic progression. The proof
which I have found and which I have the honor to submit to the
Academy in this tract, is not purely arithmetical but is based in
part on considering continuously varying quantities.

See [13] for the translation of Dirichlet’s memoir. For the life and work of
Dirichlet see Elstrodt [14].

In [12], Dirichlet proves his theorem for the case of prime modulus and the
case of composite modulus only sketches. At the end he writes that originally
he had a complicated argument showing L(1, χ) 6= 0 for χ of composite modulus
but later discovered an interesting connection between L(s, χ) and the theory
of quadratic forms, which gives nonvanishing of L(1, χ) in complete generality
as a corollary, and so he decided to deal with this matter in detail elsewhere.
The connection that Dirichlet discovered includes his remarkable class number
formula (Varadarajan [48])

h(d) =


w
√
|d|

2π L(1, χd) if d < 0

√
d

logαL(1, χd) if d > 0.

Here d ∈ Z is a fundamental discriminant, meaning that d = 4n + 1 and d is
square-free or d = 16n + 8, 12 and d/4 is square-free; h(d) is the number of
equivalence classes of the quadratic forms ax2 + bxy + cy2 with discriminant
d = b2 − 4ac and coprime coefficients a, b, c ∈ Z, under the action of the matrix
group SL2(Z); in other words, h(d) is the class number of the quadratic number
field Q[

√
d]; χd(n) = ( dn ), so called Kronecker’s symbol, is an extension of

Legendre’s symbol from the theory of quadratic residues; w = 2, 4 or 6 as
d < −4, d = −4 or d = −3, respectively; and, finally, α = 1

2 (x0 + y0
√
d) where

x0, y0 ∈ N is the smallest solution to the Pell equation x2 − dy2 = 4, so α is
the primitive unit in the ring of integers of Q[

√
d]. Because h(d) 6= 0, in fact
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h(d) ∈ N, and every real character χ has the form χ = χd for some fundamental
discriminant d, a corollary of this formula is that L(1, χ) 6= 0.

An alternative proof of nonvanishing of L(1, χ) based on properties of holo-
morphic functions, especially those defined by Dirichlet series, goes as follows
(e.g., [43, Chapter VI]). The proof of continuity of L(s, χ) for s > 0 and χ 6= χ0

gives in the complex domain s ∈ C that L(s, χ) is holomorphic for Re(s) > 0.
Also, L(s, χ0) − c(s − 1)−1, c =

∏
p|m(1 − p−1), is holomorphic for Re(s) > 0

(see part 1 of Proposition 1.3.1 and part 5 of Proposition 2.3.1). Now assume
for the contrary that L(1, ψ) = 0 for a non-principal character ψ modulo m.
Then, on the one hand, the product

P (s) =
∏

χ∈G(m)∗

L(s, χ)

defines a function holomorphic for Re(s) > 0 as the pole of L(s, χ0) at s = 1
is cancelled by the zero of L(s, ψ) at the same point. On the other hand, by
Proposition 1.3.2, for Re(s) > 1 this function is also given by Dirichlet series

S(s) =
∑
n≥1

an
ns

=
∏

p, (p,m)=1

(∑
k≥0

1
pkf(p)s

)g(p)
where an ∈ N0. The lower bound in Proposition 1.3.2 shows that there is a
real number κ ∈ [1/ϕ(m), 1] such that the series S(s) converges for s > κ
but diverges for s = κ. By a theorem on Dirichlet series with nonnegative real
coefficients, due to E. Landau, S(s) defines a function holomorphic for Re(s) > κ
but with a singularity at s = κ. This contradicts uniqueness of holomorphic
extensions: S(s) = P (s) for Re(s) > 1 and P (s) is holomorphic for Re(s) > 0.

Proofs of Dirichlet’s theorem can be found in Chandrasekharan [8, Chapter
10], Chapman [9], Hermoso [19], Ireland and Rosen [21, Chapter 16], Iwaniec
and Kowalski [22, Chapter 2.3], Montgomery and Vaughan [29, Chapter 4.3],
Nathanson [32, Chapter 10], Pollack [36, Chapter 2], Pollack [37, Chapter 4],
Selberg [42], Serre [43, Chapter VI], Shapiro [44], Varadarajan [48, Chapter 6.1]
and many other sources. For a view of Dirichlet’s theorem from the point of
logic see Avigad [3].
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Chapter 2

The Prime Number
Theorem

Le plus court chemin entre deux vérités dans le domaine réel passe par le do-
maine complexe.

The shortest path between two truths in the real domain passes through the
complex domain.

J. Hadamard, apocryphal quote

The very first question one can ask about the infinite sequence of prime numbers,

p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11, p6 = 13, p7 = 17, p8 = 19, . . . ,

is how fast it grows. Around 1800, young C. F. Gauss conjectured that for large
x the number of primes not exceeding x is nearly

Li(x) =
∫ x

2

dt

log t
.

Li(x) ≈ x/ log x in the first approximation but on finer scale Li(x) deviates
markedly from x/ log x. Gauss’ conjecture was proved one century later inde-
pendently by J. Hadamard (1865–1963) and Ch. de la Valée Poussin (1866–
1962).

Theorem 2.0.1 (Hadamard, de la Valée Poussin, 1896) The number of
prime numbers that are smaller or equal to x is asymptotic to x/ log x.

This is usually called the Prime Number Theorem (PNT). We state it in the
traditional ‘explicit’ form with x/ log x but it should be noted that Hadamard
and de la Valée Poussin proved the more precise version with the main term
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Li(x) and certain error term. Using the standard notation for the number of
primes not exceeding x,

π(x) = |{p | p ≤ x}|,

we can write the PNT as

π(x) = (1 + o(1))
x

log x
where x→ +∞.

For the sequence of primes (pn)n≥1 this gives for n→∞ the asymptotic relation
pn ≈ n log n.

In Proposition 2.1.1 we present in a simple form the analytic approach to
primes and derive by means of it that π(x) → +∞ and, on the other hand,
an upper bound on π(x) showing that primes form a sparse subset of N; this
argument (in part 4) goes back to Legendre. In Proposition 2.1.4 and Corol-
lary 2.1.5 we prove the classical bounds x/ log x � π(x) � x/ log x obtained
first by Chebyshev around 1850. Section 2.2 contains a proof of the PNT. It
is short but we achieve this by the usual trick of moving the hardest steps to
separate places, Sections 2.3 and 2.4. The proof uses basic complex analysis
— properties of holomorphic functions, especially ζ(s) — and goes back to N.
Wiener, with further simplifications due to D. J. Newman.

2.1 Chebyshev’s bounds on π(x)

Recall that if x is real, π(x) denotes the number of primes ≤ x.

Proposition 2.1.1 For every real x > 1 we have the estimate∏
p≤x

1
1− 1/p

> log x.

It has the following corollaries.

1. For x→ +∞, π(x)→ +∞ — the set of prime numbers is infinite.

2. For every x > 1, ∑
p≤x

1
p
> log log x− 1.

3. For every x > 1,

0 <
∏
p≤x

(1− 1/p) <
1

log x
.

4. For x→ +∞, π(x) = o(x) — the set of prime numbers is sparse.

Proof. The estimate follows from∏
p≤x

1
1− 1/p

=
∏
p≤x

(1 + p−1 + p−2 + · · · ) ≥
∑
n≤x

1
n
>

∫ bxc+1

1

dt

t
> log x.
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The first and key inequality is implied by the fact that every number n ≤ x is a
product of powers of distinct primes not exceeding x. Note that the uniqueness
of this expression is not needed.

1. By the estimate, for x → +∞ the product goes to +∞ and cannot be
finite.

2. Comparing the Taylor expansions of log(1 + x) and log(1− x)−1, we get
that

log(1 + p−1) = log(1− p−1)−1 −
∑
k≥1

2
2kp2k

> log(1− p−1)−1 −
∑
k≥1

1
p2k

= log(1− p−1)−1 − 1
p2 − 1

.

Thus, for x > 1,∑
p≤x

log(1 + p−1) >
∑
p≤x

log(1− p−1)−1 −
∞∑
n=2

1
n2 − 1

>
∑
p≤x

log(1− p−1)−1 −
∞∑
n=2

1
n(n− 1)

=
∑
p≤x

log(1− p−1)−1 − 1

and, using the initial estimate,∑
p≤x

1
p

>
∑
p≤x

∑
k≥1

(−1)k−1

kpk
=
∑
p≤x

log(1 + p−1)

>
∑
p≤x

log(1− p−1)−1 − 1 = log
∏
p≤x

1
1− p−1

− 1

> log log x− 1.

3. This is the reciprocal form of the estimate.
4. Let ε > 0 be given. We show that π(n) < εn for every n > N . Recall

that in every interval k + 1, k + 2, . . . , k +m of m consecutive integers,

ϕ(m) = m
∏
p|m(1− 1/p)

are coprime with m. Using part 3, we fix m so that
∏
p|m(1 − 1/p) < ε/2 and

then take N ∈ N so that n > N implies m < (ε/2)n. Then, for n > N ,

π(n) ≤ m+ ϕ(m) nm = m+ n
∏
p|m(1− 1/p) < (ε/2)n+ n(ε/2) = εn,

where the first inequality follows from the fact that if p ≤ n then p ≤ m or
m < p ≤ n but (p,m) = 1. 2
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Proposition 2.1.2 For every n ∈ N, we have the following estimates.

1.
(
2n
n

)
≥ 4n

2n+1 .

2.
(
2n+1
n

)
≤ 4n.

3.
(
2n
n

)
≤ (2n)π(2n).

4.
∏
p≤n p ≤ 4n.

Proof. 1. This estimate follows from the binomial expansion 4n = (1 + 1)2n =∑2n
k=0

(
2n
k

)
and the inequalities

(
2n
k

)
≤
(
2n
n

)
, 0 ≤ k ≤ 2n.

2. Since 2 · 4n = (1 + 1)2n+1 =
∑2n+1
k=0

(
2n+1
k

)
≥
(
2n+1
n

)
+
(
2n+1
n+1

)
= 2
(
2n+1
n

)
.

3. This follows from the fact that no prime factor p of
(
2n
n

)
= (2n)!

(n!)2 exceeds
2n and from the inequality pa ≤ 2n for the highest power of p dividing

(
2n
n

)
.

Indeed,

a =
∞∑
k=1

(
b2n/pkc − 2bn/pkc

)
≤

∑
k, pk≤2n

1, thus pa ≤ 2n,

because
(
2n
n

)
= (2n)!

(n!)2 , the highest exponent b with which pb divides m! is b =
bm/pc+ bm/p2c+ · · · , b2αc − 2bαc ≤ 1 for every α ∈ R and b2αc − 2bαc = 0 if
0 ≤ 2α < 1.

4. We proceed by induction on n. For n = 1 and 2 the estimate holds.
For even n > 2 it holds because

∏
p≤n p =

∏
p≤n−1 p ≤ 4n−1 < 4n. For odd

n = 2m+ 1 > 1 we split the product as∏
p≤n

p =
( ∏
p≤m+1

p

)( ∏
m+1<p≤2m+1

p

)
.

The first product is ≤ 4m+1 by induction. The second product divides
(
2m+1
m

)
=

(2m+1)!
m!(m+1)! and thus is at most 4m by part 2. Hence∏

p≤n

p ≤ 4m+1 · 4m = 4n.

2

Setting n = bxc in part 4 and taking logarithm, we get the next bound.

Corollary 2.1.3 For every real x > 1,∑
p≤x

log p ≤ (2 log 2)x.
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Proposition 2.1.4 For every real δ > 1 and x ≥ 2,

(log 2)x
log x

− 4 < π(x) <
(2δ log 2)x

log x
+ x1/δ.

Proof. To obtain the lower bound, we take logarithm of the inequality in part
3 of Proposition 2.1.2 and estimate log

(
2n
n

)
from below by part 1:

π(2n) ≥ (log 4)n− log(2n+ 1)
log(2n)

>
(log 2)2n
log(2n)

− 2.

For x ≥ 2, we take the unique n ∈ N such that 2n ≤ x < 2n+ 2 and get

π(x) ≥ π(2n) >
(log 2)2n
log(2n)

− 2 >
(log 2)(x− 2)

log x
− 2 ≥ (log 2)x

log x
− 4.

The upper bound follows from Corollary 2.1.3: for fixed δ > 1,

2(log 2)x >
∑

x1/δ<p≤x

log p ≥ (π(x)− π(x1/δ)) log(x1/δ) ≥ (π(x)− x1/δ) log x
δ

or
(2δ log 2)x

log x
+ x1/δ > π(x).

2

For large x we obtain the following estimate.

Corollary 2.1.5 For every ε > 0 there is an x0 = x0(ε) such that if x > x0

then
(log 2− ε)x

log x
< π(x) <

(2 log 2 + ε)x
log x

.

2.2 Proof of the Prime Number Theorem

We prove the PNT (Theorem 2.0.1). We know the Chebyshev function

ϑ(x) =
∑
p≤x

log p

from Corollary 2.1.3: ϑ(x) ≤ (2 log 2)x for x ≥ 1. First we show that the
stronger relation ϑ(x) = x+ o(x), x→ +∞, is equivalent with the PNT.

Proposition 2.2.1 For x→ +∞, we have the equivalence

π(x) =
x+ o(x)

log x
⇐⇒ ϑ(x) = x+ o(x).
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Proof. This follows from the estimates

ϑ(x)
log x

≤ π(x) ≤ ϑ(x)
log x

(1 +O(log log x/ log x)) +
x

(log x)2

=
ϑ(x)
log x

+O(x(log log x)/(log x)2).

The lower bound is immediate from
∑
p≤x log p ≤ π(x) log x. As for the upper

bound, from ϑ(x) ≥
∑
y<p≤x log p ≥ (π(x)− π(y)) log y we get

π(x) ≤ ϑ(x)
log y

+ π(y) ≤ ϑ(x)
log y

+ y.

Setting y = x/(log x)2, we get the upper bound. 2

Proposition 2.2.2 If the integral∫ +∞

1

ϑ(x)− x
x2

dx =
∫ +∞

0

(ϑ(et)e−t − 1) dt

converges then ϑ(x) = x+ o(x) for x→ +∞ and hence the PNT holds.

Proof. The second integral is obtained from the first by the substitution x = et.
Suppose that ϑ(x) 6= x+ o(x) as x→ +∞. This means that lim supϑ(x)/x > 1
or lim inf ϑ(x)/x < 1. Suppose the first case occurs, the second is similar. There
exists a λ > 1 such that for every y > 0 there is an x, x > y, with ϑ(x) > λx. The
integral of (ϑ(t)− t)t−2 over the interval [x, λx] is (since ϑ(t) is nondecreasing)∫ λx

x

ϑ(t)− t
t2

dt >

∫ λx

x

λx− t
t2

dt =
∫ λ

1

λ− u
u2

du = c > 0

where the constant c depends only on λ. So

lim
r→+∞

∫ r

1

ϑ(t)− t
t2

dt

does not exist or is +∞ because the Cauchy condition is violated. 2

We need to prove the convergence of the above integral. To this end we calculate
the Laplace transform of the integrand ϑ(et)e−t − 1. For s ∈ C with Re(s) > 1,
let

F (s) =
∑
p

log p
ps

.

Proposition 2.2.3 For z ∈ C with Re(z) > 0,∫ +∞

0

(
ϑ(et)

et
− 1
)

e−zt dt =
F (z + 1)
z + 1

− 1
z
.
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Proof. It suffices to show that for Re(s) > 1,

s

∫ +∞

0

ϑ(et)e−st dt = F (s)

—then we set s = z + 1 and subtract
∫ +∞
0

e−zt dt = 1/z. Indeed,

s

∫ +∞

0

ϑ(et)e−st dt = s

∫ +∞

1

ϑ(x)x−s−1 dx =
∞∑
n=1

ϑ(n) · s
∫ n+1

n

x−s−1 dx

=
∞∑
n=1

ϑ(n)(n−s − (n+ 1)−s) =
∞∑
n=1

n−s(ϑ(n)− ϑ(n− 1))

=
∑
p

log p
ps

= F (s).

2

The proof of the PNT rests on the following two results whose proof we
postpone in the next two sections.

Proposition 2.2.4 The function

F (z + 1)
z + 1

− 1
z

=
1

z + 1

∑
p

log p
pz+1

− 1
z

has a holomorphic extension from Re(z) > 0 to Re(z) ≥ 0.

By its definition, F (s) is holomorphic on Re(s) > 1 because it is a sum of entire
functions and the sum converges uniformly for Re(s) > 1 + δ, δ > 0. Thus
(z+1)−1F (z+1)−z−1 is holomorphic on Re(z) > 0. The proposition says that
there is an open set D ⊂ C and a holomorphic function f : D → C such that
D contains the right halfplane Re(z) ≥ 0 and f(z) = (z + 1)−1F (z + 1) − z−1

for Re(z) > 0.

Theorem 2.2.5 (Wiener and Ikehara, 1932) Let f : [0,+∞) → R be a
function such that (i) f is bounded, (ii) f has integral on every bounded interval
[a, b] ⊂ [0,+∞) and (iii) the Laplace transform of f ,

g(z) =
∫ +∞

0

f(t)e−zt dt,

has a holomorphic extension from Re(z) > 0 to Re(z) ≥ 0. Then the integral∫ +∞

0

f(t) dt

converges and equals g(0). That is to say, we may set z = 0 in the Laplace
transform of f(t).
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For Re(z) > δ > 0 we have in the integral defining g(z) the integrable majorant
f(t)e−δt. Thus, calculating g′(z), we can exchange limits and see that g(z)
is indeed holomorphic on Re(z) > 0. The theorem says that the existence of
holomorphic extension to Re(z) ≥ 0 forces f(t) behave regularly for t→ +∞.

Proof of Theorem 2.0.1. We set

f(t) = ϑ(et)e−t − 1 and g(z) = F (z + 1)(z + 1)−1 − z−1.

Function f(t) is locally integrable and is bounded because 0 ≤ ϑ(et) ≤ (log 4)et

by Corollary 2.1.3. Function g(z) is the Laplace transform of f(t) by Propo-
sition 2.2.3 and has the required holomorphic extension by Proposition 2.2.4.
Therefore, by Theorem 2.2.5, the integral∫ +∞

0

f(t) dt =
∫ +∞

0

(
ϑ(et)

et
− 1
)
dt =

∫ +∞

1

ϑ(x)− x
x2

dx

converges. By Propositions 2.2.1 and 2.2.2, the PNT holds. 2

2.3 The extension of (z + 1)−1F (z + 1)− z−1

We prove Proposition 2.2.4. The function F (s) is roughly the logarithmic deriva-
tive of the zeta function (s ∈ C)

ζ(s) =
∑
n≥1

1
ns
, Re(s) > 1.

Here the power ns for s ∈ C and n ∈ N or more generally αs for real α > 0 is
to be understood as exp(s logα) with the real logarithm (in Chapter 3 of [25]
you may enjoy αs with both α, s ∈ C).

Proposition 2.3.1 The function ζ(s) has the following properties.

1. ζ(s) is holomorphic on Re(s) > 1.

2. For Re(s) > 1 we have the Euler product

ζ(s) =
∏
p

1
1− p−s

.

3. For Re(s) > 1 one has ζ(s) 6= 0.

4. For any s ∈ C with Re(s) > 1 there are points u ∈ C arbitrarily close to s
such that ζ(u) 6∈ (−∞, 0].

5. The function ζ(s)− (s−1)−1 has a holomorphic extension from Re(s) > 1
to Re(s) > 0.
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6. For Re(s) = 1, s 6= 1, one has ζ(s) 6= 0.

Proof. 1. By the definition, ζ(s) is a sum of series of entire functions and the
series converges uniformly for Re(s) > 1 + δ > 1.

2 and 3. As ζ(s) = L(s, χ0) for the modulus m = 1, we proved parts 2 and
3 already in parts 4 and 5 of Proposition 1.2.5. The small distinction is that
there s ∈ (1,+∞) but here s ∈ C, Re(s) > 1. Just replace in the proof of part
4 the summand 1/ns by |1/ns| = n−Re(s) and in the proof of part 5 the identity
|χ(p)p−s| = p−s by |χ(p)p−s| = p−Re(s) and set c = −ζ(Re(s)).

4. This follows from the local expansion around s: for u near fixed s, ζ(u) =
ζ(s) + (a + o(1))(u − s)k where k ∈ N and a ∈ C, a 6= 0 (ζ(u) is not locally
constant anywhere because it decreases for u > 1).

5. For Re(s) > 1,

ζ(s)− (s− 1)−1 =
∞∑
n=1

n−s −
∫ +∞

1

x−sdx =
∞∑
n=1

Fn(s)

where

Fn(s) =
∫ n+1

n

(n−s − x−s) dx.

It is easy to show directly from this formula that for every fixed s ∈ C, the limit
limu→s(Fn(u) − Fn(s))(u − s)−1 exists. Thus each Fn(s) is an entire function.
Further,

|Fn(s)| =
∣∣∣∣s∫ n+1

n

∫ x

n

u−s−1 du dx

∣∣∣∣ ≤ |s| max
n≤u≤n+1

|u−s−1| = |s|
nRe(s)+1

.

So
∑
n Fn(s) converges uniformly for Re(s) > δ > 0 and defines on Re(s) > 0 a

holomorphic extension of ζ(s)− (s− 1)−1.
6. To approach the values of ζ(s) on the line Re(s) = 1, we derive for

Re(s) > 1 an expansion of log |ζ(s)| into a real series.
Since ζ(s) 6= 0 for Re(s) > 1 by part 3, for such s we can take complex loga-

rithm of the product in part 2 (see part 3 of Proposition 1.2.7), and comparison
of the real parts gives (the correction term 2k(s) · πi is irrelevant)

log |ζ(s)| = Re
(∑

p

log(1− p−s)−1
)
, Re(s) > 1.

Writing s = σ + it, σ > 1, and expanding log(1− p−s)−1 by part 6 of Proposi-
tion 1.2.7, we get the series

log |ζ(s)| = Re
(∑

p

(p−s + p−2s/2 + p−3s/3 + · · · )
)

=
∞∑
n=1

ann
−σ cos(t log n)

where an = r−1 if n = pr, r ∈ N, and an = 0 else.
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We have an ≥ 0 and n−σ ≥ 0 for every n ∈ N and σ > 1 but cos(t log n)
may be negative. Using the identity

3 + 4 cosx+ cos 2x = 2(1 + cosx)2 ≥ 0, x ∈ R,

we achieve nonnegativity of the cosinus factors by taking a linear combination
of three of these series: for every σ, t ∈ R, σ > 1, we have

log |ζ(σ)3ζ(σ + it)4ζ(σ + 2it)| =
∞∑
n=1

2ann−σ(1 + cos(t log n))2 ≥ 0.

This inequality implies that no number 1 + it can be a zero of ζ(s). Indeed, if
ζ(1 + it0) = 0 for some t0 6= 0, then ζ(σ)3ζ(σ+ it0)4ζ(σ+ 2it0) = O(σ− 1)→ 0
as σ → 1+ because ζ(σ)3 ∼ (σ− 1)−3 (by part 5 or part 1 of Proposition 1.3.1),
ζ(σ+it0)4 = O((σ−1)4) (local expansion of ζ(s) around 1+it0) and ζ(σ+2it0) =
O(1). Thus for t = t0 and σ → 1+ the left side of the inequality goes to −∞,
which is impossible. 2

Proof of Proposition 2.2.4. We extend F (s) − (s − 1)−1 =
∑
p p
−s log p −

(s− 1)−1 holomorphicaly to Re(s) ≥ 1. This provides a holomorphic extension
of

F (z + 1)
z + 1

− 1
z

=
1

z + 1

(
F (z + 1)− 1

z
− 1
)

to Re(z) ≥ 0. If Re(s) > 1 and ζ(s) 6∈ (−∞, 0], logarithmic derivative of the
Euler product for ζ(s) gives (by part 3 of Proposition 1.2.7)

ζ(s)′

ζ(s)
= (log ζ(s))′ =

(
2k(s) · πi+

∑
p

log(1− p−s)−1

)′
= −

∑
p

log p
ps − 1

= −F (s)−
∑
p

log p
ps(ps − 1)

as k(s) ∈ Z is locally constant. By part 4 of Proposition 2.3.1 and the continuity
of involved functions, for every s with Re(s) > 1 we get

F (s)− 1
s− 1

= −
(
ζ ′(s)
ζ(s)

+
1

s− 1

)
−
∑
p

log p
ps(ps − 1)

.

The expression on the right side is holomorphic on Re(s) ≥ 1. The sum defines a
function holomorphic for Re(s) > 1

2 . By parts 1, 3, 5 and 6 of Proposition 2.3.1,
ζ ′(s)/ζ(s) + (s − 1)−1 is holomorphic in a neighborhood of every point s with
Re(s) ≥ 1 and s 6= 1. In a deleted neighborhood of s = 1 we have ζ(s) =
(s− 1)−1 + z(s) with z(s) holomorphic on Re(s) > 0 (by part 5). So

ζ ′(s)
ζ(s)

+
1

s− 1
=
−(s− 1)−2 + z′(s)
(s− 1)−1 + z(s)

+
1

s− 1
=
z(s) + (s− 1)z′(s)

1 + (s− 1)z(s)

is holomorphic in a neighborhood of s = 1 as well. 2
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2.4 The theorem of Wiener and Ikehara

We proceed to the proof of Theorem 2.2.5; it is due to D. J. Newman. For a
bounded function

f : [0,+∞)→ R
that is integrable on bounded intervals, we set

g(z) =
∫ +∞

0

f(t)e−tz dt for Re(z) > 0

and assume that g(z) has a holomorphic extension to Re(z) ≥ 0. We prove that∫ +∞

0

f(t) dt = g(0).

For real T > 0 we set

gT (z) =
∫ T

0

f(t)e−zt dt.

Like for the functions Fn(s) in the extension of ζ(s), it is easy to show directly
that gT (z) is an entire function of z. We prove that

lim
T→+∞

gT (0) = g(0).

Let R > 0 be real and C be the domain

C = C(R) = {z ∈ C : |z| < R & Re(z) > −δ}

where δ = δ(R) > 0 is so small that g(z) has a holomorphic extension to C
— such δ exists because the segment [−iR, iR] is compact. By the Cauchy
theorem,

g(0)− gT (0) =
1

2πi

∫
∂C

g(z)− gT (z)
z

dz

where ∂C is the D-shaped boundary curve of C, oriented counterclockwise.
We estimate the last integral by introducing an appropriate integration ker-

nel G(z). By the Cauchy theorem, also

g(0)− gT (0) =
1

2πi

∫
∂C

g(z)− gT (z)
z

G(z) dz

provided that G(z) is holomorphic on C and G(0) = 1. We set

G(z) = G(z,R, T ) =
(

1 +
z2

R2

)
ezT

where R, T > 0 have the previous meaning. The function G(z) is entire and
G(0) = 1. Its task is to tame the integrand on the circle |z| = R: on |z| = R we
have ∣∣∣∣G(z)

z

∣∣∣∣ =
∣∣∣∣ezT (z + z)

R2

∣∣∣∣ = 2eRe(z)T · |Re(z)|
R2

.
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It suffices to show that

I =
∫
∂C

g(z)− gT (z)
z

G(z) dz → 0 as T → +∞.

We split the integral I in three summands:

I =
∫
∂C−

g(z)
z
G(z) dz −

∫
∂C−

gT (z)
z

G(z) dz +
∫
∂C+

g(z)− gT (z)
z

G(z) dz

=
∫
∂C−

g(z)
z
G(z) dz −

∫
K−

gT (z)
G(z)
z

dz +
∫
∂C+

(g(z)− gT (z))
G(z)
z

dz

= I1 − I2 + I3

where ∂C− and ∂C+ are the arcs of the curve ∂C lying in Re(z) ≤ 0 and
Re(z) ≥ 0, respectively, and K− is the halfcircle of |z| = R in Re(z) ≤ 0. In
I2 we could replace ∂C− with K− without changing the integral because the
integrand is holomorphic in C\{0}.

To bound the integral I1, we split the integrand as J(z) · ezT where J(z) =
g(z)z−1(1 + z2R−2) is independent of T . Let M1 = M1(R) be the maximum
modulus of J(z) on ∂C−. We have

|I1| ≤M1

∫
∂C−

∣∣ezT ∣∣ dz.
Due to the location of ∂C−, for every ε > 0 there is a κ > 0 such that

∣∣ezT ∣∣ ≤
e−κT on ∂C−, except for a part of ∂C− close to the imaginary axis, whose
length is an ε-fraction of the total length |∂C−| < 3R. On this small part of
∂C− we use the trivial estimate

∣∣ezT ∣∣ ≤ 1. Thus

|I1| ≤M1(e−κT + ε)|∂C−| < 3M1R · (e−κT + ε).

It follows that for every fixed R > 0,

lim
T→+∞

|I1| = 0.

Integrals I2 and I3 are estimated with the help of the kernel G(z). We set
B = supt≥0 |f(t)|. For Re(z) < 0 we have

|gT (z)| =

∣∣∣∣∣
∫ T

0

f(t)e−tz dt

∣∣∣∣∣ ≤ B
∫ T

−∞

∣∣e−tz∣∣ dt =
Be−Re(z)T

|Re(z)|

and for Re(z) > 0 similarly

|g(z)− gT (z)| ≤ B
∫ +∞

T

|e−tz| dt =
Be−Re(z)T

Re(z)
.

Using the above expression for |G(z)/z| on the circle |z| = R and the fact that
the curves K− and ∂C+ have length πR, we obtain the neat estimates

|I2| ≤
2πB
R

and |I3| ≤
2πB
R
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which are independent of T .
For given ε > 0, we fix R > 8πB/ε and the corresponding domain C = C(R);

then |I2| + |I3| < ε/2 regardless of T . We know that for this fixed R the
contribution from I1 is for large T smaller than ε/2. Thus |I| ≤ |I1|+|I2|+|I3| <
ε for every large T . We conclude that I → 0 as T → +∞.

This finishes the proof of Theorem 2.2.5 and also of the PNT.

2.5 Remarks

For more information on the origin of the quotation attributed to Hadamard
see [23]. Section 2.1 is based on Pollack [36, Sections 1.2 and 1.4] and Aigner
and Ziegler [1, Chapter 2 on Bertrand postulate]. The cute arguments using
binomial coefficients are due to P. Erdős. The exact asymptotic relation for the
sum of reciprocals of primes is (Tenenbaum [47, Theorem 9 in Section 1.6])∑

p≤x

1
p

= log log x+ 0.261497 · · ·+O(1/ log x), x→ +∞,

where

0.261497 · · · = γ − c0 = lim
n→∞

( ∑
m≤n

1/m− log n
)
−
∑
p

(
log(1− 1/p)−1 − 1/p

)
.

The proof of the PNT in Sections 2.2–2.4, in which the crucial simplification in
Section 2.4 is due to D. J. Newman, is based on Bak and Newman [5, Section
19.5], Hlawka, Schoißengaier and Taschner [20, Chapter 5], Newman [33], [34,
Chapter 7] and Zagier [50].

More information on the prime number theory and the PNT is in Narkiewicz
[30]. The formal proof of the PNT (not the one using complex analysis but the
elementary proof due to Selberg and Erdős) was computationally verified, see
Avigad et al. [2].
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Chapter 3

Shnirel’man’s theorem on
sums of prime numbers

I zaranee nikogda ne ska�ex~ — kak komu obernets� v itoge ta ili ina�
�iznenna� istori�: travimy� v 1936 godu akademik Nikola� Nikolae-
viq Luzin sravnitel~no blagopoluqno zakonqil �izn~ v 1950 godu v svoe�
moskovsko� kvartire na Sretenskom bul~vare, a tvorivxie nad nim sud
Nepremenny� sekretar~ Akademii N. P. Gorbunov i qlen-korrespondent
Akademii blistatel~ny� L. G. Xnirel~man u�dut iz �izni v 1938 godu
— pervy� budet rasstrel�n kak vrag naroda, vtoro�, vozvrativxis~ s
“besedy” v NKVD, pustit gaz v svoe� kvartire.1

S.S. Demidov, B. V. Levxin [10]

In 1930, L. G. Shnirel’man (1905–1938) made a sensational progress in one of
the oldest unsolved problems in number theory, the Goldbach conjecture. This
problem, posed in 1742 in a letter by L. Euler to Ch. Goldbach, states that
every even number bigger than 2 is a sum of two prime numbers. As of 2010, it
is still wide open. Shnirel’man proved a weaker but significant result.

Theorem 3.0.1 (Shnirel’man, 1930) There is a constant h such that every
natural number bigger than 1 is a sum of at most h (not necessarily distinct)
prime numbers.

His proof provided value h = 800 000. The Goldbach conjecture, if true, implies
that h = 3 suffices: 2 and 3 are primes, even numbers n ≥ 4 have form n = p+q,
5 is a prime, and odd numbers n ≥ 7 have form n = 3 + (n − 3) = 3 + p + q.
It is easy to see that h = 2 is not enough and that there exist infinitely many
n not expressible as a sum of at most two prime numbers. We obtain the value
h = 800 000 as well (Corollary 3.2.3).

1For translation see Section 3.5.
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We prove Shnirel’man’s theorem in Section 3.2. In Section 3.1 we introduce
the notion of Shnirel’man’s density and derive its key property, which we ap-
ply in the proof of Theorem 3.0.1. This property (Theorem 3.1.2), found by
Shnirel’man, asserts that in order to prove that every n ∈ N is a sum of at most
h numbers from a subset A ⊂ N, it suffices to show this for any positive fraction
(in the sense of Shnirel’man’s density) of numbers in N. The main step in the
proof of Theorem 3.0.1 is the bound

r(n) <
cn

(log n)2
∏
p|n

(1 + 1/p)

where c > 0 is a constant and r(n) is the number of solutions of the equation
n = p+q, that is, the number of ways to write n as a sum of two prime numbers.
This upper bound on r(n) is established in Section 3.3 by means of Selberg sieve.
In Section 3.4 we complete a technical step in the derivation of Selberg sieve.

3.1 Shnirel’man’s density

For h sets A1, A2, . . . , Ah ⊂ N0 we define their sumset as

A1 +A2 + · · ·+Ah = {a1 + a2 + · · ·+ ah | ai ∈ Ai, 1 ≤ i ≤ h}.

If A1 = A2 = · · · = Ah = A, we abbreviate A + A + · · · + A (h terms) by hA.
Let A ⊂ N0. For n ∈ N we set

A(n) = |A ∩ [n]| = |A ∩ {1, 2, . . . , n}|.

Shnirel’man’s density σ(A) of A is

σ(A) = inf
n∈N

A(n)
n

.

Note that σ(A) = 0 if 1 6∈ A. Also, 0 ≤ σ(A) ≤ 1, A(n) ≥ σ(A)n for every
n ∈ N, and for A ⊂ N we have σ(A) = 1 ⇐⇒ A = N. The lower density d(A)
of A is

d(A) = lim inf
n→∞

A(n)
n

.

Again, 0 ≤ d(A) ≤ 1.

Proposition 3.1.1 Let A,B ⊂ N0 be two sets of nonnegative integers.

1. One has

d(A) > 0 ⇐⇒ A(n)/n > c > 0 for every n > N

where c > 0 and N ∈ N are constants.

2. One has
σ(A) > 0 ⇐⇒ 1 ∈ A & d(A) > 0.

37



3. If 0 ∈ A ∩B and σ(A) + σ(B) ≥ 1 then A+B = N0.

4. If 0 ∈ A ∩B then

σ(A+B) ≥ σ(A) + σ(B)− σ(A)σ(B).

Proof. 1 and 2. This follows from definition of both densities.
3. Let n ∈ N0 be arbitrary. The sum of cardinalities of the sets

{a ∈ A | 0 ≤ a ≤ n} and {n− b | b ∈ B, 0 ≤ b ≤ n}

is at least σ(A)n + 1 + σ(B)n + 1 ≥ n + 2. But these sets are subsets of the
(n + 1)-element set {0, 1, . . . , n} and therefore intersect: a = n − b for some
a ∈ A and b ∈ B. Thus n = a+ b with a ∈ A, b ∈ B.

4. Let n ∈ N be arbitrary and 0 = a0 < a1 < · · · < ak ≤ n be the elements
of A not exceeding n. Consider the k + 2 sets

{ai + 0 | 1 ≤ i ≤ k}, {ai + b | b ∈ B, 1 ≤ b ≤ ai+1 − ai − 1} for 0 ≤ i ≤ k − 1,

and
{ak + b | b ∈ B, 1 ≤ b ≤ n− ak}.

They lie in (A+B)∩ [n] and are pairwise disjoint. The sum of their cardinalities
is a lower bound on (A+B)(n). We have

(A+B)(n) ≥ k +
k−1∑
i=0

B(ai+1 − ai − 1) +B(n− ak)

≥ k + σ(B)
k−1∑
i=0

(ai+1 − ai − 1) + σ(B)(n− ak)

= k + σ(B)(n− k) = A(n)(1− σ(B)) + σ(B)n
≥ σ(A)n(1− σ(B)) + σ(B)n
= (σ(A) + σ(B)− σ(A)σ(B))n.

Hence σ(A+B) ≥ σ(A) + σ(B)− σ(A)σ(B). 2

Theorem 3.1.2 If A ⊂ N has σ(A) > 0, then there is an h such that every
n ∈ N is a sum of at most h (not necessarily distinct) elements of A.

Proof. We add 0 to A so that 0 ∈ A. Rewriting the inequality in part 4 of
Proposition 3.1.1 as

1− σ(A+B) ≤ (1− σ(A))(1− σ(B))

and iterating this, we obtain

1− σ(kA) ≤ (1− σ(A))k and σ(kA) ≥ 1− (1− σ(A))k

for every k ∈ N. From σ(A) > 0 we have σ(kA) ≥ 1
2 for sufficiently big k. By

part 3 of Proposition 3.1.1, kA+ kA = (2k)A = N0. Thus every n ∈ N is a sum
of at most h = 2k positive elements of A. 2
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Corollary 3.1.3 Suppose that A ⊂ N has d(A) > 0 and 2, 3 ∈ A. Then there
is an h such that every n ∈ N, n ≥ 2, is a sum of at most h (not necessarily
distinct) elements of A.

Proof. By part 2 of Proposition 3.1.1, we can apply Theorem 3.1.2 to A ∪ {1}
and write every n ∈ N as a sum of at most h summands which are either 1 or
lie in A. Let n ≥ 2. If n = 2, we are done, n ∈ A. If n ≥ 3, we write

n = 2 + (n− 2) = 2 +m1 +m2 + · · ·+mk

where k ≤ h and mi ∈ A ∪ {1}. If no mi is 1, we use this expression without
change. If exactly one mi is 1, say m1 = 1, we have

n = 3 +m2 + · · ·+mk.

If at least two mi are 1, say m1 = m2 = · · · = ml = 1, 2 ≤ l ≤ k, and mi ∈ A for
i > l, we replace the sum m1 +m2 + · · ·+ml = l by an equal sum of less than l
2’s and 3’s (1+1 = 2, 1+1+1 = 3, 1+1+1+1 = 2+2, 1+1+1+1+1 = 2+3,
and so on) and have

n = 2 + (2 + · · ·+ 3) +ml+1 + · · ·+mk,

with at most l initial 2’s and 3’s. In all three cases, n is expressed as a sum of
at most k + 1 ≤ h+ 1 elements from A. 2

3.2 Proof of Shnirel’man’s theorem

Corollary 3.1.3 does not apply directly to the set of prime numbers

P = {2, 3, 5, 7, 11, 13, 17, 19, 23, . . . }

because d(P ) = 0 (as we know from the previous chapter). But Shnirel’man
could prove that d(2P ) > 0. Applying Corollary 3.1.3 to

A = {2, 3} ∪ 2P,

we see that every n ∈ N, n ≥ 2, is a sum of at most h summands which are
2, 3 or of the form p + q. Thus every n ≥ 2 is a sum of at most 2h primes and
Theorem 3.0.1 is proved.

But it is hard to prove that d(2P ) > 0. We begin by showing how it follows,
perhaps surprisingly, from an upper bound on r(n).

Theorem 3.2.1 Let r(n) be the number of representations n = p+ q of n ∈ N
as a sum of two primes. Then for every n ≥ 2,

r(n) <
cn

(log n)2
∏
p|n

(1 + 1/p)

where c = 827. For n > 2.85 · 106 we may take c = 580.
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Corollary 3.2.2 The set of primes P has the property that d(2P ) > 0.

Proof. We prove that (2P )(n)� n for n ≥ 4. Let n ≥ 4 be arbitrary. By the
Cauchy–Schwarz inequality,

(r(4) + r(5) + · · ·+ r(n))2 ≤
(∑n

m=4, r(m)>0 12
)(
r(4)2 + r(5)2 + · · ·+ r(n)2

)
= (2P )(n) · (r(4)2 + r(5)2 + · · ·+ r(n)2)

and we have

(2P )(n) ≥
(
r(4) + r(5) + · · ·+ r(n)

)2
r(4)2 + r(5)2 + · · ·+ r(n)2

.

The sum in the numerator counts all pairs of primes p, q such that p + q ≤ n.
Thus, by Proposition 2.1.4,(

r(4) + r(5) + · · ·+ r(n)
)2 ≥ (π(n/2)2

)2 � n4/(log n)4.

By Theorem 3.2.1, the sum in the denominator satisfies

n∑
m=4

r(m)2 �
n∑

m=4

m2

(logm)4
∏
p|m

(1 + 1/p)2 ≤ n2

(log n)4

n∑
m=4

∏
p|m

(1 + 1/p)2.

As for the last sum,

n∑
m=4

∏
p|m

(1 + 1/p)2 ≤
n∑

m=4

(∑
d|m

1
d

)2

=
n∑

m=4

(∑
d|m

1
d

)(∑
e|m

1
e

)

=
∑
d,e

1
de

n∑
m=4,d|m,e|m

1 ≤ n
∑
d,e

1
de[d, e]

(as d|m, e|m ⇐⇒ [d, e]|m)

≤ n
∑
d,e

1
(de)3/2

(since [d, e] ≥ max(d, e) ≥
√
de)

= n

( ∞∑
d=1

1
d3/2

)2

� n.

Thus the denominator is� n3/(log n)4. Together, for n ≥ 4, we get the desired
estimate

(2P )(n)� n4/(log n)4

n3/(log n)4
= n.

2

To complete the proof of Shnirel’man’s Theorem 3.0.1, it remains to establish
Theorem 3.2.1. The main bulk of the proof still lies ahead of us.

We extract from the calculations specific value of Shnirel’man’s constant.
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Corollary 3.2.3 Every number n ∈ N, n ≥ 2, is a sum of at most 800 000
prime numbers.

Proof. First we need an explicit constant in the last asymptotic inequality �
in the previous proof. We show that

π(n/2)
n/ log n

>
log 2

2
> 0.345 for n > 730.

Setting in the lower bound of Proposition 2.1.4 x = n/2, we get

π(n/2)
n/ log n

>
log 2

2
+

(log 2)2/2
log n− log 2

− 4 log n
n

for n ≥ 4.

The stated inequality holds if n(log n)−2 > 8(log 2)−2 = 16.65 . . . , which is true
if n > 730; note that n/ log n increases for n > 3 and n/(log n)2 for n > 8. We
obtain an explicit lower bound on the numerator: for every n > 730,

(r(4) + r(5) + · · ·+ r(n))2 > ((1/2) log 2)4(n/ log n)4 > 0.014(n/ log n)4.

As for the denominator, ζ(3/2)2 < 6.9 because

ζ(3/2) <
N∑
n=1

n−3/2 +
∫ +∞

N

x−3/2 dx =
N∑
n=1

n−3/2 + 2N−1/2 < 2.625

for N = 12. By Theorem 3.2.1, for n > 2.85 · 106 we have

r(4)2 + r(5)2 + · · ·+ r(n)2 < (580 · 6.9)n3/(log n)4

and
2P (n) >

0.014
580 · 6.9

n > (3.49 · 10−6)n, n > 2.85 · 106.

For small n, 1 ≤ n ≤ 2.85 · 106, the set A = {1, 2, 3} ∪ 2P satisfies that A(n) >
(10/2.85·106)n > (3.5·10−6)n because {1, 2, . . . , 10} ⊂ A. Shnirel’man’s density
of A therefore satisfies

σ(A) = σ({1, 2, 3} ∪ 2P ) > min(3.49 · 10−6, 3.5 · 10−6) = 3.49 · 10−6.

By the proofs of Theorem 3.1.2 and Corollary 3.1.3, if (1 − 3.49 · 10−6)k ≤ 1
2

then every n ≥ 2 is a sum of at most 4k + 1 primes. Since

k =
⌈

log(1/2)
log(1− 3.49 · 10−6)

⌉
< 1.99 · 105

works, every n ≥ 2 is a sum of 4k + 1 < 800 000 primes. 2
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3.3 Bounding r(n) by Selberg sieve

We prove Theorem 3.2.1. For m ∈ N, we denote by M(m) the smallest prime
factor of m. For any real z > 1 we have the inequality

r(n) ≤ 2z + #
(
m(n−m) | m ∈ N, 1 ≤ m ≤ n− 1,M(m(n−m)) ≥ z

)
.

Indeed, every expression n = p + q contributing to r(n) is accounted for in an
expression n = m + (n − m) with m < z or n − m < z or in an expression
n = m + (n − m) with m(n − m) having no prime factor < z. If we set, as
we will do, z = nα for some 0 < α < 1, then the first term 2z = 2nα is
small and it suffices to bound the second term counting the numbers among
n− 1, 2(n− 2), 3(n− 3), . . . , (n− 2)2, n− 1 with no prime factor < nα.

Thus it is of great interest to bound, for real z > 1 and general finite sequence
A ⊂ N (both z and A will depend on a parameter n ∈ N), the quantity

S(A, z) = #(a ∈ A |M(a) ≥ z)

counting terms in A with no prime factor < z. We derive a general upper bound
on S(A, z) and apply it to the particular sequence A = (m(n−m) | m ∈ N, 1 ≤
m ≤ n− 1) relevant for bounding r(n).

We expand S(A, z) by the inclusion-exclusion principle. For this, we need
to estimate the quantities |Ad|, d ∈ N, where

Ad = (a ∈ A | a ≡ 0 (mod d))

is the subsequence of multiples of d in A. The inclusion-exclusion gives the
formula

S(A, z) = |A| −#(a ∈ A | a ∈ Ap for some p < z)

=
∑
d∈D

(−1)ω(d)|Ad|

where ω(d) is the number of prime factors of d and

D = D(z) = {n ∈ N | n < z and n is square-free}.

We write
|Ad| = g(d)|A|, g : N→ [0, 1].

Suppose that g(d) is a simple function, namely that it is completely multiplica-
tive: g(ab) = g(a)g(b) for every a, b ∈ N and g(1) = 1. The formula for S(A, z)
then can be written in the multiplicative form

S(A, z) = |A|
∏
p<z

(1− g(p)) =
|A|∏

p<z(1− g(p))−1
=

|A|∑
k, p|k⇒p<z g(k)

and we get the neat inequality

S(A, z) ≤ |A|∑
k<z g(k)

.
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Unfortunately, it is not widely applicable because the only sequence A with
completely multiplicative g(d) is (1, 1, . . . , 1). But perhaps one can obtain a
useful inequality for more sequences A, by relaxing equalities |Ad| = g(d)|A|
to approximations and estimating errors? This is what A. Selberg (1917–2006)
achieved. If the approximation errors are in average small, we obtain a nontrivial
upper bound on S(A, z), called Selberg sieve.

Theorem 3.3.1 (Selberg, 1947) Let A, z > 1 and D = D(z) be as above.
Suppose that g : N→ R is a completely multiplicative function satisfying g(1) =
1 and 0 < g(n) < 1 for every n ≥ 2, and the numbers rd ∈ R, d ∈ D, are defined
by

|Ad| = g(d)|A|+ rd.

Then, with the above notation,

S(A, z) <
|A|∑

k<z g(k)
+

∑
f∈D(z2)

3ω(f)|rf |.

To derive this inequality we need a technical lemma whose proof we postpone
to Section 3.4. For fixed z > 1 and D = D(z) we consider the quadratic form

G(xd | d ∈ D) =
∑
e,d∈D

g([e, d]) · xexd.

Lemma 3.3.2 There exist real numbers λ∗d, d ∈ N, such that λ∗1 = 1, |λ∗d| ≤ 1
for all d ∈ D, and

G(λ∗d | d ∈ D) ≤ 1∑
k<z g(k)

.

Proof of Theorem 3.3.1. If λd, d ∈ D, are any real numbers satisfying just
the condition λ1 = 1, we have the bound

S(A, z) ≤
∑
a∈A

( ∑
d∈D,d|a

λd

)2

=
∑
a∈A

( ∑
d∈D,d|a

λd

)( ∑
e∈D,e|a

λe

)
.

Indeed, for a ∈ A with M(a) ≥ z the summand is λ2
1 = 1 and all summands are

nonnegative. Changing the summation order, we get

S(A, z) ≤
∑
e,d∈D

λeλd
∑

a∈A, [e,d]|a

1

=
∑
e,d∈D

λeλd · (g([e, d])|A|+ r[e,d])

= G(λd | d ∈ D) · |A|+
∑
e,d∈D

r[e,d]λeλd.

By Lemma 3.3.2, for λd = λ∗d we have

S(A, z) <
|A|∑

k<z g(k)
+
∑
e,d∈D

|r[e,d]|.
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To bound the last sum, we consider the equality

f = [e, d], e, d ∈ D.

Since e, d < z are squarefree, so is f and f < z2. For fixed f = p1p2 . . . pk,
the number of pairs e, d ∈ N for which f = [e, d] (we may drop the condition
e, d ∈ D since we are proving an upper bound) is the number of pairs of sets
A,B such that

{1, 2, . . . , k} = A ∪B.

These pairs correspond bijectively to 3-colorings of {1, 2, . . . , k}—one color for
the elements in A\B, the second for the elements in B\A, and the third for the
elements in A ∩B. Thus there are 3k = 3ω(f) pairs. Summing over square-free
numbers f < z2, we get ∑

e,d∈D

|r[e,d]| ≤
∑

f∈D(z2)

3ω(f)|rf |.

2

For bounding r(n) by Selberg sieve we assume that n is even; for odd n we
have r(n) = 0 or 2—the latter occurs when n − 2, n are prime twins. We need
to count the multiples of a square-free number d among the numbers m(n−m),
1 ≤ m ≤ n− 1. We start, for a prime p, with the congruence

m(n−m) ≡ 0, m ∈ Zp.

Its solutions m are the residues 0 and n modulo p. Thus for p dividing n it has
one solution and else it has two solutions. For given even n ∈ N, we define the
function g : P → (0, 1) by

g(p) =
{

1/p . . . p divides n
2/p . . . p does not divide n.

The above congruence has then g(p)p solutions. We extend g multiplicatively
to g : N → (0, 1] (and set g(1) = 1); g is completely multiplicative and 0 <
g(d) < 1 for every d ≥ 2, as 2 divides n. We see that more generally for every
square-free d ∈ N the congruence

m(n−m) ≡ 0, m ∈ Zd,

has exactly g(d)d solutions: for d = p1p2 . . . paq1q2 . . . qb, where the primes pi
divide n and the primes qi do not divide n, only one m makes m(n−m) zero in
Zpi and exactly two m’s in Zqi , thus by the Chinese remainder theorem exactly
2b = g(d)d residues m make m(n − m) zero in Zd. Finally, we consider the
number of solutions |Ad| of the congruence

m(n−m) ≡ 0 (mod d), 1 ≤ m ≤ n− 1.
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The interval 1, 2, . . . , n − 1 contains b(n − 1)/dc disjoint complete systems of
residues modulo d and is contained in d(n−1)/de such systems. In each system
we have g(d)d solutions. Thus

g(d)db(n− 1)/dc ≤ |Ad| ≤ g(d)dd(n− 1)/de.

The upper and the lower bound differ by at most g(d)d = 2b ≤ 2ω(d) and the
number g(d)(n− 1) lies between them like |Ad|. We have the following result.

Lemma 3.3.3 Let n ∈ N be even and g : N→ (0, 1] be the corresponding above
defined completely multiplicative function. Then for every square-free number
d ∈ N, the number |Ad| of multiples of d in the sequence

A = (m(n−m) | 1 ≤ m ≤ n− 1)

satisfies |Ad| = g(d)(n− 1) + rd where |rd| ≤ 2ω(d). Hence, for z > 1 we have∑
k∈D(z2)

3ω(k)|rk| ≤
∑

k∈D(z2)

6ω(k) ≤ z2+2 log2 6 < z7.17.

Proof. We have proven the first part already. As for the sum, the bound
follows from that it has less than z2 summands and 6ω(k) = 2ω(k) log2 6 < z2 log2 6

(because 2ω(k) ≤ k < z2 for k ∈ D(z2)). 2

The second ingredient in Selberg sieve is a good lower bound on
∑
k<z g(k).

For it we need some estimates, one of them involving the function d(n) counting
divisors of n ∈ N,

d(n) =
∑
d|n

1 = |{(k, l) ∈ N2 | kl = n}|.

Proposition 3.3.4 For every real x > 1 and m ∈ N the following holds.

1.
∑
n<x 1/n > log x.

2.
∑
n<x(log n)/n < (3/4)(log x)2.

3.
∑
n<x d(n)/n > (1/4)(log x)2.

4.
∏
p|m(1− p−1) > (1/2)

∏
p|m(1 + p−1)−1.

Proof. 1. This is the integral estimate∑
n<x

1
n
>

∫ x

1

dt

t
= log x.
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2. For x ≤ 3 the inequality holds, as (log 2)/2 < 0.73(log 2)2. For x > 3 we
have the integral estimate∑

n<x

log n
n

<
log 2

2
+

log 3
3

+
∫ x

3

log t
t
dt

=
(log x)2

2
+

log 2
2

+
log 3

3
− (log 3)2

2

<
(log x)2

2
+ 0.2

< 0.7(log x)2 (as log x > 1)

and the inequality also holds.
3. By the bounds in parts 1 and 2,∑

n<x

d(n)
n

=
∑
kl<x

1
kl

=
∑
k<x

1
k

∑
l<x/k

1
l
>
∑
k<x

log(x/k)
k

= (log x)
∑
k<x

1
k
−
∑
k<x

log k
k

>
(log x)2

4
.

4. This follows from the equality

∞∏
n=2

(1− n−2) =
∞∏
n=2

(n− 1)(n+ 1)
n2

=
1
2
.

2

Lemma 3.3.5 Let n ∈ N be even, g : N → (0, 1] be the corresponding above
defined completely multiplicative function and z > 1 be a real number. Then∑

k<z

g(k) >
(log z)2

8
∏
p|n(1 + p−1)

.

Proof. For k ∈ N, let s1, s2, . . . , sj be the exponents of the primes in the
decomposition of k that do not divide n. Then

g(k) =
2s1+s2+···+sj

k
≥ (s1 + 1)(s2 + 1) . . . (sj + 1)

k
=
dn(k)
k

where dn(k) is the number of divisors of k coprime with n. Also,∏
p|n

(1− 1/p)−1 =
∑
k∈Pn

k−1
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where Pn is the set of numbers composed only of primes dividing n. Hence∑
k<z g(k)∏

p|n(1− 1/p)
≥

∑
k<z

dn(k)k−1
∑
l∈Pn

l−1 =
∑
k<z

dn(k)
∑

k|t, t/k∈Pn

t−1

=
∞∑
t=1

t−1
∑

k<z, k|t, t/k∈Pn

dn(k)

≥
∑
t<z

t−1
∑

k|t, t/k∈Pn

dn(k).

The last inner sum equals d(t). To see it, we split t as t = t1t2 with t1 ∈ Pn
and (t2, n) = 1. Then k runs through the numbers it2 with i|t1 and the sum
contains d(t1) summands, each of which equals d(t2). The inner sum equals
d(t1)d(t2) = d(t) because (t1, t2) = 1 and d(·) is multiplicative. Thus, by bounds
in parts 3 and 4 of Proposition 3.3.4,∑

k<z

g(k) ≥
∏
p|n

(1− 1/p)
∑
t<z

d(t)/t > (1/8)
∏
p|n

(1 + 1/p)−1(log z)2.

2

Proof of Theorem 3.2.1. Let n ∈ N be even and

A = (m(n−m) | 1 ≤ m ≤ n− 1).

Let z > 1, S(A, z), g(k) and rk be as above. By Theorem 3.3.1,

r(n) ≤ 2z + S(A, z) < 2z +
n∑

k<z g(k)
+

∑
k∈D(z2)

3ω(k)|rk|.

We set z = n1/10, then (log z)2 = (log n)2/100 and z7.17 < n3/4. By Lemmas
3.3.3 and 3.3.5,

r(n) < 2n1/10 +
800n

(log n)2
∏
p|n

(1 + 1/p) + n3/4 <
827n

(log n)2
∏
p|n

(1 + 1/p) for n ≥ 2,

because n1/10 < n3/4 < 9n/(log n)2 for every n ≥ 2.
To get a smaller c for (not too) large n, we set z = nα for an appropriate

positive α < 7.17−1 < 0.139 and find positive constants c1 and n0 such that
2nα +n7.17α < c1n(log n)−2 for every n > n0. We omit 2nα as it is negligible in
the considered ranges of n and look for the maximum c1 of f(n) = (log n)2/nβ

on [2,+∞) where β = 1 − 7.17α ∈ (0, 1). It is attained at n0 = exp(2/β) and
c1 = f(n0) = (2/eβ)2. Selecting β = 0.134581 corresponding to α = 0.1207 . . .
we get n0 = 2.844 . . . · 106 and c1 = 29.888 . . . . The neglected term contributes
factor 2nα/n7.17α = 2/n6.17α < 2/n0.6 < 0.001 for n > n0. Thus for n > n0 >
2.85 · 106 we may take c = 8α−2 + c1 < 580. 2
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3.4 Numbers λ∗d
It remains to prove Lemma 3.3.2. We begin by recalling properties of the Möbius
function µ : N → {−1, 0, 1}, defined by µ(n) = µ(p1p2 . . . pk) = (−1)k for
square-free numbers n = p1p2 . . . pk and by µ(n) = 0 else.

Proposition 3.4.1 Möbius function µ has the following properties.

1. It is multiplicative: µ(1) = 1 and µ(ab) = µ(a)µ(b) for every pair of
coprime numbers a, b ∈ N.

2. For every n ∈ N, ∑
d|n

µ(d) =
{

0 if n > 1
1 if n = 1.

3. The Möbius inversion formula: for any pair of functions f, g : N→ R,

∀n ∈ N : f(n) =
∑
d|n

µ(n/d)g(d) ⇐⇒ ∀n ∈ N : g(n) =
∑
d|n

f(n).

Proof. 1. This follows from the definition of µ and from the uniqueness of the
prime factorization.

2. For n = 1 the sum equals 1. For n > 1 the sum does not change if
we replace n by the product p1p2 . . . pk of its prime factors. By the binomial
formula, the sum equals

∑
d|p1...pk

µ(d) =
k∑
j=0

(
k

j

)
(−1)j = (1− 1)k = 0.

3. This follows from part 2. We show only the implication ⇒, the proof of
the converse is similar. Suppose that f(n) is for every n expressed by the stated
formula. Then∑

d|n

f(d) =
∑
d|n

∑
e|d

µ(d/e)g(e) =
∑
e|n

g(e)
∑

f |(n/e)

µ(f) = g(n).

2

We define numbers λ∗n. Recall that z > 1 is a real number, D = D(z) is
the set of square-free numbers smaller than z, g : N → (0, 1] is a completely
multiplicative function satisfying g(1) = 1 and 0 < g(n) < 1 for n > 1, and

G(xd | d ∈ D) =
∑
d,e∈D

g([d, e]) · xdxe.

For l ∈ N, we define

f(l) =
∑
d|l

µ(d)
g(l/d)

.
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By the complete multiplicativity of g and the definition of µ,

f(l) =
1
g(l)

∑
d|l

µ(d)g(d) =
1
g(l)

∏
p|l

(1− g(p)) > 0

and we see that f is multiplicative. By Möbius inversion formula,

1
g(k)

=
∑
d|k

f(d).

For d ∈ D we define

αd =
∑
dl∈D

1
f(l)

and λ∗d =
µ(d)αd

f(d)g(d)α1
.

We prove four properties of the numbers αd and λ∗d, of which 1, 3 and 4 give
Lemma 3.3.2. To simplify notation, we use symbol 〈C〉 for the characteristic
function of a condition C: 〈C〉 = 1 if C holds and as 〈C〉 = 0 if it does not.

Proposition 3.4.2 With the above notation, the following holds.

1. λ∗1 = 1 and |λ∗d| ≤ 1 for every d ∈ D.

2. For every k ∈ D we have
∑
d∈D〈k|d〉 · g(d)λ∗d = µ(k)/(α1f(k)).

3. G(λ∗d | d ∈ D) = (α1)−1.

4. α1 =
∑
k∈D f(k)−1 ≥

∑
k<z g(k).

Proof. 1. Since µ(1) = g(1) = f(1) = 1, λ∗1 = 1. Note that for any multiplica-
tive function h we have h(ab) = h(a)h(b) whenever ab ∈ D, as then (a, b) = 1.
Let d ∈ D, then

α1 =
∑
k∈D

1
f(k)

=
∑
l

〈l|d〉
∑
k∈D

〈(k, d) = l〉
f(k)

=
∑
l

〈l|d〉
f(l)

∑
m

〈ml ∈ D & (m, d/l) = 1〉
f(m)

≥
∑
l

〈l|d〉
f(l)

∑
m

〈md ∈ D〉
f(m)

=
∑
m

〈md ∈ D〉
f(m)

∑
l

〈l|d〉
f(l)

=
αd
f(d)

∑
l

〈l|d〉f(d/l)

=
αd

f(d)g(d)
.

Thus
|λ∗d| =

αd
f(d)g(d)α1

≤ 1.
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2. Let k ∈ D. Then∑
d∈D

〈k|d〉g(d)λ∗d =
∑
d∈D

〈k|d〉g(d)
µ(d)αd

f(d)g(d)α1

=
1
α1

∑
l

〈kl ∈ D〉µ(kl)αkl
f(kl)

=
µ(k)
α1f(k)

∑
l

〈kl ∈ D〉µ(l)
f(l)

∑
m

〈klm ∈ D〉
f(m)

=
µ(k)
α1f(k)

∑
l

〈kl ∈ D〉µ(l)
∑
m

〈klm ∈ D〉
f(lm)

=
µ(k)
α1f(k)

∑
n

〈kn ∈ D〉
f(n)

∑
l

〈l|n〉µ(l)

=
µ(k)
α1f(k)

.

3. Using the identity [d, e] = de/(d, e) and complete multiplicativity of g, we
transform G(xd | d ∈ D) and get

G(xd | d ∈ D) =
∑
di∈D

g(d1)xd1g(d2)xd2
g((d1, d2))

=
∑
di∈D

∑
k|di

f(k)g(d1)xd1g(d2)xd2

=
∑
k∈D

f(k)
∑
di∈D

〈k|d1 & k|d2〉g(d1)xd1g(d2)xd2

=
∑
k∈D

f(k)
(∑
d∈D

〈k|d〉g(d)xd
)2

.

Setting xd = λ∗d we get, by part 2,

G(λ∗d | d ∈ D) =
∑
k∈D

f(k)
(

µ(k)
α1f(k)

)2

=
1
α2

1

∑
k∈D

1
f(k)

=
1
α1
.

4. Finally,

α1 =
∑
k∈D

1
f(k)

=
∑
k∈D

g(k)
∏
p|k

(1− g(p))−1

which equals
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=
∑
k∈D

g(k)
∏
p|k

(1 + g(p) + g(p2) + · · · )

=
∑
k∈D

g(k)
∑
l

〈p|l⇒ p|k〉g(l)

=
∑
k,l

〈k ∈ D & (p|l⇒ p|k)〉g(kl)

=
∑
m

g(m)
∑
k

〈k ∈ D & k|m & (p|(m/k)⇒ p|k)〉

≥
∑
m<z

g(m)

because for m < z the last inner sum is ≥ 1 (set k to be the product of the
prime factors of m). 2

3.5 Remarks

This chapter is based on Nathanson [31, Chapter 7] and Gelfond and Linnik
[16, Chapter 1 and 6]. Here is a translation of the opening quotation.

Beforehand you can never say what will be the final turn in this or
that life story: academician Nikolaj Nikolajevič Luzin, persecuted in
1936, ended his life peacefully in his Moscow apartment at Streten-
skij boulevard in 1950, but those who were plotting a tribunal for
him, the regular secretary of the Academy N. P. Gorbunov and the
corresponding member of the Academy, brilliant L. G. Shnirel’man,
would die in 1938 — the first will be shot dead as an enemy of
the people and the second, coming home from a “conversation” at
NKVD, will open gas faucet in his flat.

S. S. Demidov, B. V. Levšin [10]

Shnirel’man proved his theorem in [45] and in [46] published an expanded
version of his memoir. The inequality σ(A + B) ≥ σ(A) + σ(B) − σ(A)σ(B)
(part 4 of Theorem 3.1.1) was later improved by Mann [27] to σ(A + B) ≥
min(1, σ(A) + σ(B)). To bound r(n), Shnirel’man used the sieve of V. Brunn
that had been developed around 1920. The technically simpler Selberg sieve was
published in [41]. The current record value of Shnirel’man’s constant h = 7 is
due to Ramaré [38] who proved that every even number is a sum of at most six
primes. In 1937, I. M. Vinogradov [49] proved that every sufficiently large odd
number is a sum of three primes; for the proof see, for example, Nathanson [31,
Chapter 7], Gowers [18] or Karacuba [24, Chapter 10]. Thus every sufficiently
large n ∈ N is a sum of at most four primes.
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Bratus and Pak [7] give an application of Goldbach’s conjecture in algorith-
mic group theory. Pintz [35] presents interesting information on the origin of
Goldbach’s conjecture. For the life and mathematics of A. Selberg see Baas and
Skau [4].
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Chapter 4

Roth’s theorem on 3-term
arithmetic progressions

Denote by 1 = u1 < u2 < · · · < uk ≤ x a sequence of integers no three of which
form an arithmetic progression. Denote by A(x) the maximum value of k. The
author proves that limx→∞A(x)/x = 0. This has been conjectured for about 20
years. Outline of the proof: Put (. . . )

P. Erdős’s review [15] of K. Roth’s article [39]

We present two proofs of a fundamental result obtained by K. Roth in 1952.

Theorem 4.0.1 (Roth, 1952) For every δ > 0 there is an N ∈ N such that
if n > N and the set A ⊂ {1, 2, . . . , n} has more than δn elements, then A
contains an arithmetic progression a, a+ d, a+ 2d, d > 0, of length 3.

By arithmetic progression we shall mean one with positive difference; progres-
sions a, a, . . . , a with zero difference will be called degenerate. Denoting by r3(n)
the maximum size of a subset in {1, 2, . . . , n} containing no arithmetic progres-
sion of length 3, we rephrase Roth’s theorem as r3(n) = o(n) for n→∞.

Sections 4.1 and 4.2 contain an analytic proof of Roth’s theorem using the
circle method. In Sections 4.3, 4.4 and 4.5 we give a different combinatorial
proof using tools of the extremal graph theory.

4.1 Analytic proof

For real t we consider the function (i =
√
−1 is the imaginary unit)

e(t) = exp(2πit) : R→ {z ∈ C | |z| = 1}
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mapping R onto the unit circle in C. Recall that for every z ∈ C,

exp(z) =
∑
n≥0

zn

n!
.

We summarize some useful properties of e(t).

Proposition 4.1.1 Let e(t) = exp(2πit) and f(z), g(z) be two complex Laurent
polynomials, which means that

f(z) =
∑
k∈X

akz
k and g(z) =

∑
k∈Y

bkz
k

where ak, bk ∈ C and X,Y ⊂ Z are finite sets of integers; we set ak = 0 if k 6∈ X
and similarly for bk. The following hold.

1. For every t, u ∈ R and m ∈ Z we have e(t)e(u) = e(t+ u), e(t)m = e(mt)
and e(t) = e(−t) = 1/e(t).

2. If m ∈ Z then ∫ 1

0

e(mt) dt = 〈m = 0〉 =
{

1 if m = 0
0 if m 6= 0.

3. The identity ∫ 1

0

f(e(t)) · g(e(t)) dt =
∑
k+l=0

akbl.

Analogous identities hold for products of several Laurent polynomials.

4. The Parseval identity ∫ 1

0

|f(e(t))|2 dt =
∑
k∈X

|ak|2.

5. The Cauchy–Schwarz inequality∫ 1

0

|f(e(t)) · g(e(t))| dt ≤
(∫ 1

0

|f(e(t))|2 dt
)1/2(∫ 1

0

|g(e(t))|2 dt
)1/2

.

Proof. 1. We have exp(0) = 1 and, by the binomial theorem,

exp(z1) exp(z2) =
∑
k≥0

zk1
k!

∑
l≥0

zl2
l!

=
∑
k+l≥0

1
(k + l)!

k+l∑
k=0

(
k + l

k

)
zk1z

l
2

=
∑
m≥0

(z1 + z2)m

m!

= exp(z1 + z2).
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This gives the identities for e(t).
2. Indeed, m = 0 gives

∫ 1

0
e(0) dt =

∫ 1

0
1 dt = 1, while for m 6= 0 one has∫ 1

0

e(mt) dt =
[

1
2πim

exp(2πimt)
]1
0

=
1− 1
2πim

= 0

as exp(2πim) = 1 for every m ∈ Z.
3. Multiplying both polynomials, using linearity of integration and parts 1

and 2, we see that the integral equals∑
k,l (∈X∪Y )

akbl

∫ 1

0

e((k + l)t) dt =
∑
k+l=0

akbl.

4. This follows from the previous identity by setting g(z) = f(z), because
f(z) =

∑
k∈−X a−kz

k where −X = {−x | x ∈ X}.
5. We review the proof of the Cauchy–Schwarz inequality for real vector

spaces with inner product. Suppose V is a vector space with the field of scalars
R and the inner product

〈·, ·〉 : V × V → R,
which is a bilinear and symmetric mapping (〈αu + βv,w〉 = α〈u,w〉 + β〈v, w〉
and 〈v, u〉 = 〈u, v〉 for any α, β ∈ R and u, v, w ∈ V ) satisfying 〈u, u〉 ≥ 0 for
any u ∈ V , with equality only for u = 0. Thus, for any u, v ∈ V , v 6= 0, and
λ ∈ R,

〈u− λv, u− λv〉 ≥ 0,

equivalently
〈u, u〉 − 2λ〈u, v〉+ λ2〈v, v〉 ≥ 0.

Setting λ = 〈u, v〉/〈v, v〉 we get

〈u, u〉 − 2
〈u, v〉2

〈v, v〉
+
〈u, v〉2

〈v, v〉
≥ 0.

This after rearrangement gives the general Cauchy–Schwarz inequality

|〈u, v〉| ≤
√
〈u, u〉〈v, v〉.

Now we take the vector space of real continuous functions F : [0, 1] → R,
with the inner product

〈F,G〉 =
∫ 1

0

F (t) ·G(t) dt.

The stated inequality follows by applying the Cauchy–Schwarz inequality to the
functions |f(e(t))| and |g(e(t))|. 2

Let A ⊂ Z be a finite set. We consider the generating Laurent polynomial
of A,

fA(z) =
∑
a∈A

za =
∑
k∈Z
〈k ∈ A〉zk.
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For m ∈ Z, m 6= 0, note the identity

fA(zm) = fmA(z)

where mA = {ma | a ∈ A}. We define the function

p3(A) = #{(a, a+ d, a+ 2d) ∈ A3 | d ∈ Z}.

It counts twice every arithmetic progressions of length 3 in A (as (a, a+d, a+2d)
and (a+2d, a+2d−d, a+2d−2d)) plus the degenerate ones (a, a, a), a ∈ A. Note
that A contains no arithmetic progressions of length 3 if and only if p3(A) = |A|.

Proposition 4.1.2 For any finite set A ⊂ Z,

p3(A) =
∫ 1

0

fA(e(t))2 · fA(e(−2t)) dt.

Proof. The integrand is the product of fA(e(t)), fA(e(t)), and fA(e(−2t)) =
fA(e(t)−2) = f−2A(e(t)). By part 3 of Proposition 4.1.1, the integral equals

#{(x, y, z) ∈ A3 | x+ y − 2z = 0}.

By the parametrization x = a, y = a+ 2d, z = a+ d, this equals p3(A). 2

The next result is often called Fekete’s lemma.

Lemma 4.1.3 If a sequence of nonnegative real numbers a1, a2, . . . is subaddi-
tive, which is to say that, for all m,n ≥ 1,

am+n ≤ am + an,

then the limit
L = lim

n→∞

an
n

exists, is finite and an/n ≥ L for every n ≥ 1.

Proof. For m,n ∈ N we write n = km+ l where k, l ∈ N0 and 0 ≤ l < m. The
subadditivity implies an ≤ kam + al, which we rewrite as the inequality

an
n
≤ am

m
· 1

1 + l/km
+

al
km+ l

.

For m = 1 this is just an/n ≤ a1, so 0 ≤ an/n ≤ a1 and an/n is bounded. Let

L = lim inf
r→∞

ar/r < +∞.

We fix m so that am/m is near to L and let n → ∞. Then, as the factor at
am/m goes to 1 and the last term in the inequality goes to 0, for every large n
the fraction an/n is also near to L. Thus

L = lim
r→∞

ar/r.
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By the inequality, if am/m < L for some m, then an/n < L− δ for some δ > 0
and every large n, which is not possible. Thus am/m ≥ L for every m. 2

Recall that for n ∈ N,

r3(n) = max{|A| | A ⊂ [n], p3(A) = |A|}

equals to the maximum size of a subset in [n] free of arithmetic progressions of
length 3.

Proposition 4.1.4 Let A ⊂ Z be any (not necessarily finite) set and m,n ∈ N.

1. If A is free of arithmetic progressions of length 3, then so is any subset
B ⊂ A and any affine image B = {αa+ β | a ∈ A}, α, β ∈ Z.

2. We have the inequalities

r3(n) ≤ r3(n+ 1) and r3(m+ n) ≤ r3(m) + r3(n).

3. There exists a limit

d3 = lim
n→∞

r3(n)
n
∈ [0, 1]

and r3(n) ≥ d3n for all n ≥ 1.

Proof. 1. This is clear from the definitions and from the fact that arithmetic
progressions of length 3 are preserved by affine mappings.

2. Suppose that A ⊂ [n], |A| = r3(n), contains no arithmetic progressions of
length 3. But A is a subset of [n+ 1] as well and thus r3(n) = |A| ≤ r3(n+ 1).
Suppose that A ⊂ [m+n], |A| = r3(m+n), contains no arithmetic progressions
of length 3. Thus r3(m+n) = |A| = |A∩[m]|+|A∩[m+1,m+n]| ≤ r3(m)+r3(n),
by part 1.

3. This follows by the second inequality in part 2 and Lemma 4.1.3. 2

Hence Roth’s theorem amounts to proving that d3 = 0.
For every n ∈ N, we fix a subset A(n) of [n] with the size r3(n) and no

arithmetic progression of length 3. Further, we let

gn(z) = d3z + d3z
2 + · · ·+ d3z

n.

Then

fA(n)(1)− gn(1) = |A(n)| − d3n = r3(n)− d3n = o(n), n→∞.

The main step is to extend this estimate from z = 1 to any z on the unit circle
|z| = 1.
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Proposition 4.1.5 In the above notation,

fA(n)(z)− gn(z) = o(n), n→∞,

uniformly on the unit circle |z| = 1. Said explicitly, for every ε > 0 there is an
n0 = n0(ε) such that if n > n0 then

max
|z|=1

|fA(n)(z)− gn(z)| < εn.

We defer the proof to the next section. Note that, trivially,

max
|z|=1

|fA(n)(z)− gn(z)| ≤ max(d3, 1− d3)n.

Now we can prove Roth’s theorem.

Proof of Theorem 4.0.1. Let n ∈ N and the set A(n) ⊂ [n] be as before (i.e.,
witnessing the value r3(n)). We define

f(z) = fA(n)(z) =
∑

a∈A(n)

za, g(z) = gn(z) = d3

n∑
k=1

zk and h(z) = f(z)− g(z).

Thus
f(z) = g(z) + h(z).

By Proposition 4.1.2,

|A(n)| = p3(A(n)) =
∫ 1

0

f(e(t))2 · f(e(−2t)) dt

=
∫ 1

0

(
g(e(t)) + h(e(t))

)2 · (g(e(−2t)) + h(e(−2t))
)
dt

=
∫ 1

0

g(e(t))2 · g(e(−2t)) dt + seven integrals

= d3
3

∫ 1

0

g0(e(t))2 · g0(e(−2t)) dt + seven integrals

where g0(z) = z + z2 + · · ·+ zn and each of the seven integrals has the form∫ 1

0

a(e(t)) · b(e(t)) · c(e(−2t)) dt

with a(z), b(z), c(z) ∈ {g(z), h(z)} and at least one of a(z), b(z), c(z) equal to
h(z). Since g0(z) = z + z2 + · · · + zn = f[n](z), Proposition 4.1.2 gives us the
value of the first integral without h(z) in the integrand: it equals

p3([n]) = 2((n− 2) + (n− 4) + · · ·+ (n− 2bn/2c)) + n

= 2bn/2c(dn/2e − 1) + n

= n2/2 +O(n).
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We show that each of the remaining seven integrals is o(n2). We demonstrate
this in the case when b(z) = h(z), other cases are very similar. By Proposi-
tion 4.1.5, h(z) = o(n) uniformly in z ∈ C, |z| = 1. Thus∣∣∣∣∫ 1

0

a(e(t)) · h(e(t)) · c(e(−2t)) dt
∣∣∣∣ ≤ ∫ 1

0

|h(e(t))| · |a(e(t)) · c(e(−2t))| dt

= o(n)
∫ 1

0

|a(e(t)) · c(e(−2t))| dt.

By part 5 of Proposition 4.1.1 this is at most

o(n)
(∫ 1

0

|a(e(t))|2 dt
)1/2(∫ 1

0

|c(e(−2t))|2 dt
)1/2

.

As the Laurent polynomials a(z) and c(z−2) have at most n nonzero coefficients,
all in [0, 1], by part 4 of Proposition 4.1.1 each of the two integrals is ≤ n. Thus∣∣∣∣∫ 1

0

a(e(t)) · h(e(t)) · c(e(−2t)) dt
∣∣∣∣ ≤ o(n)

√
n
√
n = o(n2).

We see that, for n→∞,

n ≥ |A(n)| = p3(A(n)) =
d3
3n

2

2
+ o(n2).

This forces d3 = limn→∞ r3(n)/n = 0 and Roth’s theorem is proved. 2

4.2 Uniform bound on the unit circle

We need four lemmas. For a polynomial p(z) = a0 + a1z + · · · + anz
n and

0 ≤ m ≤ n, we define pm(z) = a0 + a1z + · · ·+ amz
m; thus pn(z) = p(z).

Lemma 4.2.1 Let p(z) = a0+a1z+ · · ·+anzn ∈ C[z] be a polynomial, numbers
u, ζ ∈ C satisfy |u| = |ζ| = 1, and |pm(ζ)| ≤M for all 0 ≤ m ≤ n for a constant
M > 0. Then

|p(u)| ≤M(n|u− ζ|+ 1).

Proof. If z is a variable and ζ ∈ C is nonzero, we have the identity

p(z)/(1− z/ζ) =
n−1∑
m=0

pm(ζ)(z/ζ)m + p(ζ)(z/ζ)n/(1− z/ζ),

which follows by expanding the left side in geometric series:

p(z)
∑
n≥0

(z/ζ)n = a0 + (a0 + a1ζ)(z/ζ) + (a0 + a1ζ + a2ζ
2)(z/ζ)2 + · · · .
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Hence, because |u| = |ζ| = 1,

|p(u)| ≤ |1− u/ζ|
n−1∑
m=0

|pm(ζ)| · |(u/ζ)m|+ |p(ζ)| · |(u/ζ)n|

= |ζ − u|
n−1∑
m=0

|pm(ζ)|+ |p(ζ)| ≤ |ζ − u|nM +M.

2

Another Dirichlet’s theorem says that for every α ∈ R and Q ∈ N there is
a fraction p/q such that |α − p/q| < 1/qQ and q ≤ Q. The next result is a
multiplicative version.

Lemma 4.2.2 For every u ∈ C, |u| = 1, and every N ∈ N there is an ω ∈ C,
|ω| = 1, and an a ∈ N such that a ≤ N , ωa = 1, and

|u− ω| < 2π
a(N + 1)

.

Proof. Two of the N + 1 numbers 1, u, u2, . . . , uN on the unit circle are within
arc distance at most 2π/(N + 1). Thus |uj −ui| < 2π/(N + 1) for some 0 ≤ i <
j ≤ N and |ua − 1| < 2π/(N + 1) where 0 < a = j − i ≤ N . Consider the a-th
roots of the number ua. Since |ua − 1| < 2π/(N + 1), one of them, v, is closer
to 1 than 2π/a(N + 1). Another is u. All these roots form vertices of a regular
a-gon R inscribed in the unit circle. We rotate R around the origin so that v is
moved to 1 and obtain a regular a-gon R′ whose vertices are a-th roots of unity.
Vertex u is rotated to a number ω which is an a-th root of unity and satisfies
|u− ω| < 2π/a(N + 1). 2

We extend the function r3(n) to positive real numbers by setting

r3(x) = r3(dxe).

We know that r3(x) − d3x = o(x) but it is not clear whether r3(x) − d3x is
monotonous. It is convenient to have a monotonous quantity and therefore we
define

R(x) = max
1≤t≤x

(r3(t)− d3t).

Lemma 4.2.3 R(x) ≥ 0 for every x > 0, function R(x) is nondecreasing and
R(x) = o(x) as x→ +∞

Proof. The first two properties are clear from the definition. We show that
R(x) = o(x). Given ε > 0, we take x0 such that t > x0 implies r3(t)− d3t < εt,
and then we take an x1 > x0 such that (x0 + 1)/x1 < ε. Let x > x1. Thus
R(x) = r3(t0) − d3t0 for some t0 ∈ [1, x]. If t0 > x0, R(x) = r3(t0) − d3t0 <
εt0 ≤ εx. If t0 ≤ x0, R(x) = r3(t0)−d3t0 ≤ r3(t0) < t0 +1 ≤ x0 +1 < εx1 < εx.
2
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Recall that A(n) ⊂ [n] is a set of size r3(n) not containing any arithmetic
progression of length 3 and

h(z) = fA(n)(z)− gn(z) =
n∑
k=1

(〈k ∈ A(n)〉 − d3)zk.

Recall that for 0 ≤ m ≤ n, hm(z) is the initial sum of h(z) obtained by replacing
the upper summation index n by m.

Lemma 4.2.4 If a, n ∈ N and ω ∈ C satisfies ωa = 1, then for 0 ≤ m ≤ n,

|hm(ω)| < 2aR(n/a) +R(n).

Proof. For a, b,m ∈ N we denote α(b, a,m), resp. β(b, a,m), the number of
elements in A(n) ∩ [m], resp. in [m], congruent to b modulo a. Note that

a∑
b=1

α(b, a,m) = |A(n) ∩ [m]| and
a∑
b=1

β(b, a,m) = m.

By parts 1 and 3 of Proposition 4.1.4,

|A(n)∩ [m]| = r3(n)−|A(n)∩ [m+ 1, n]| ≥ r3(n)− r3(n−m) ≥ d3n− r3(n−m)

and
r3(m/a) ≥ α(b, a,m)

because the set {c ∈ A(n) | c ≤ m & c ≡ b (mod a)}, counted by α(b, a,m), can
be affinely mapped to [bm/ac]. Also,

r3(m/a) = r3(dm/ae) ≥ d3dm/ae ≥ d3β(b, a,m).

Thus, using that ωc = ωb if c ≡ b modulo a, the above inequalities and the
monotonicity of R(x), we have

|hm(ω)| =

∣∣∣∣∣
a∑
b=1

ωb(α(b, a,m)− d3β(b, a,m))

∣∣∣∣∣
≤

a∑
b=1

|α(b, a,m)− r3(m/a) + r3(m/a)− d3β(b, a,m)|

≤
a∑
b=1

(r3(m/a)− α(b, a,m)) +
a∑
b=1

(r3(m/a)− d3β(b, a,m))

= 2ar3(m/a)− |A(n) ∩ [m]| − d3m

≤ 2ar3(m/a)− d3n+ r3(n−m)− d3m

= 2a(r3(m/a)− d3m/a) + (r3(n−m)− d3(n−m))
≤ 2aR(n/a) +R(n).

2
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Proof of Proposition 4.1.5. Let ε > 0 be given. We want to estimate

|h(z)| =

∣∣∣∣∣
n∑
k=1

(〈k ∈ A(n)〉 − d3)zk
∣∣∣∣∣

when n is big and z ∈ C satisfies |z| = 1. We take an n0 ∈ N such that x ≥ n0

implies R(x) < εx and then an n1 ∈ N such that x ≥ n1 implies R(x) < (ε/n0)x
(Lemma 4.2.3). Let n > n1 and z ∈ C be arbitrary with |z| = 1. We set
N = bn/n0c and use Lemma 4.2.2:

|z − ω| < 2π
a(N + 1)

for some a-th root of unity ω, where 1 ≤ a ≤ N . By Lemma 4.2.1, applied with
M = 2aR(n/a) +R(n) (Lemma 4.2.4),

|h(z)| ≤ (2aR(n/a) +R(n)) · (1 + n|z − ω|)
< (2aR(n/a) +R(n)) · (1 + 2πn0/a).

We distinguish two cases according to the size of a. If a ≤ n0, then R(n/a) ≤
R(n) < (ε/n0)n gives

|h(z)| ≤ R(n) · (2a+ 1)(1 + 2πn0/a)
≤ R(n) · (3a+ 6πn0)
< (ε/n0)n · 22n0

= 22εn.

If n0 ≤ a ≤ N , we have n/a ≥ n/N ≥ n0 and R(n/a) < εn/a. Thus

|h(z)| ≤ (2aR(n/a) +R(n)) · (1 + 2π)
≤ (2aεn/a+ εn) · (1 + 2π)
≤ 3εn(1 + 2π)
< 22εn.

2

This completes the analytic proof of Roth’s theorem. We turn to combinatorics.

4.3 Graph-theoretical proof

A graph is a pair
G = (V,E)

where V is a finite set of vertices and E ⊂
(
V
2

)
is a set of two-element subsets

of V , called edges. A triangle in G is a triple of distinct vertices {a, b, c} such
that the pairs {a, b}, {a, c}, and {b, c} are edges of G. A set of triangles in G
is edge-disjoint if no two of them share an edge, i.e., every two intersect in at
most one vertex.
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Proposition 4.3.1 For every δ > 0 there exists an n0 such that if n > n0

and G is a graph on n vertices containing m > δn2 edge-disjoint triangles
T1, T2, . . . , Tm, then G contains a triangle distinct from every Ti.

Note that m ≤
(
n
2

)
/3 < n2/6 because the edge sets of T1, . . . , Tm are disjoint.

Proposition 4.3.1 says that if G has, in the order of magnitude, the maximum
possible number of edge-disjoint triangles, then some three of them pairwise
intersect so that the three intersections are distinct and form a new triangle.
In the next section we establish Proposition 4.3.1 in a stronger form and show
that G contains � n3 triangles. Let us see now how Proposition 4.3.1 implies
Roth’s theorem.

Corollary 4.3.2 For every δ > 0 there is an n0 such that if n > n0 and
X ⊂ [n]×[n] satisfies |X| > δn2, then X contains three elements (a, b), (a+d, b),
and (a, b+ d) with d 6= 0, that is, X contains an equilateral right-angle triangle.

Proof. Horizontal lines in [n]× [n] are the n subsets

{(k, l) | k ∈ [n]}, l ∈ [n],

and, similarly, the n vertical lines have fixed k. Skew lines are the 2n − 1 sets
{(k, l) | k, l ∈ [n], k+ l = p} with fixed sum of coordinates p ∈ [2, 2n]. We denote
the set of horizontal, vertical and skew lines in [n]× [n] by L. So |L| = 4n− 1.
To X ⊂ [n]× [n] we assign the graph

G = Gn,X = (L,E) where E = {{e, f} | e, f ∈ L, e ∩ f ∈ X}.

Edges of G are the pairs of lines with intersection in X. A triangle in G is
formed by three lines, one horizontal, vertical and skew, which pairwise intersect
in points lying in X. If the three intersections coincide in one point v ∈ X (so
the three lines go through the common point v), we denote the corresponding
triangle by Tv. Triangles Tv are edge-disjoint, because two lines intersect in at
most one point, and we have exactly |X| of them.

For given δ > 0, we assume that |X| > δn2 and n > n0 where n0 is the bound
of Proposition 4.3.1 corresponding to δ/16. Since |X| > δn2 > (δ/16)|L|2, by
Proposition 4.3.1 the graph G contains a triangle T distinct from all Tv, v ∈ X.
The lines in T must intersect in three distinct points, which form an equilateral
right-angle triangle in X. 2

From this we get Roth’s theorem.

Proof of Theorem 4.0.1. For A ⊂ [n] we consider the set X ⊂ [n] × [n]
defined by

(a, b) ∈ X ⇐⇒ a+ 2b ∈ A.
Hence (the worst case is when A = [|A|])

|X| ≥
|A|∑
k=1

(dk/2e − 1) ≥ |A|(|A|+ 1)
4

− |A| ≥ |A|
2

5
if |A| ≥ 15.
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For given δ > 0, we assume that |A| > δn and n > n0 where n0 is larger than
15/δ and the bound of Corollary 4.3.2 corresponding to δ2/5. Since the set of
pairs X satisfies |X| ≥ |A|2/5 > (δ2/5)n2, by Corollary 4.3.2 it contains pairs
(a, b), (a + d, b), and (a, b + d) with d 6= 0. Hence A contains the arithmetic
progression a+ 2b, a+ 2b+ d, a+ 2b+ 2d. 2

4.4 The triangle removal lemma

We prove Proposition 4.3.1 in the following stronger form.

Proposition 4.4.1 For every δ > 0 there exist a κ > 0 and an n0 ∈ N such that
if n > n0 and G is a graph on n vertices containing more than δn2 edge-disjoint
triangles, then G contains more than κn3 triangles.

Thus � n2 edge-disjoint triangles in G force many more, � n3, new triangles.
An equivalent formulation is the triangle removal lemma: For n→∞, if a graph
G = Gn on n vertices has only o(n3) triangles, then all of them can be removed
by deleting only o(n2) edges from G. Indeed, if S is the largest set of edge-
disjoint triangles in G, then every triangle in G shares an edge with a triangle
in S and |S| = o(n2) (by Proposition 4.4.1). By deleting the 3|S| = o(n2) edges
of the triangles in S, we destroy all triangles in G. Yet more briefly: If a graph
contains few triangles, then it can be well approximated by a triangle-free graph.

In order to prove Proposition 4.4.1, we introduce a special kind of homoge-
neous graphs, ε-regular pairs, and prove that every tripartite graph such that
each two parts form an ε-regular pair contains many triangles (counting lemma).
Then we state the regularity lemma and prove by means of it and by means of
the counting lemma Proposition 4.4.1. The proof of the regularity lemma follows
in the next section.

Let G = (V,E) be a graph. For two disjoint and nonempty sets X,Y ⊂ V we
denote by e(X,Y ) the number of edges in G joining X and Y , and by d(X,Y )
the density of these edges:

d(X,Y ) =
e(X,Y )
|X| · |Y |

.

For ε ∈ (0, 1) we call (X,Y ) an ε-regular pair if for every two subsets X1 ⊂ X
and Y1 ⊂ Y satisfying |X1| ≥ ε|X| and |Y1| ≥ ε|Y |,

|d(X1, Y1)− d(X,Y )| < ε.

Note that every pair (X,Y ) with |X| = |Y | = 1 is ε-regular for any ε > 0. Also,
if ε′ ≥ ε > 0 then ε-regularity implies ε′-regularity. For x ∈ X we denote

ΓY (x) = {y ∈ Y | {x, y} ∈ E},

the set of neighbors of x in Y . Clearly, |ΓY (x)| = e({x}, Y ).
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Lemma 4.4.2 Let (X,Y ) be an ε-regular pair in a graph G = (V,E) with
edge density d = d(X,Y ) and let X1 ⊂ X and Y1 ⊂ Y be subsets satisfying
|X1| ≥ ε|X| and |Y1| ≥ ε|Y |. Then there exists a vertex x ∈ X1 such that

|ΓY1(x)| > (d− ε)|Y1|.

The same holds for the inequality < (d+ ε)|Y1|.

Proof. If this were not true, then |ΓY1(x)| ≤ (d − ε)|Y1| for every x ∈ X1. It
would follow that

e(X1, Y1) =
∑
x∈X1

|ΓY1(x)| ≤ (d− ε)|X1| · |Y1|

and d(X1, Y1) ≤ d−ε, contradicting the regularity of the pair (X,Y ). The proof
for the other inequality is similar. 2

Lemma 4.4.3 If ε > 0 and G = (U ∪ V ∪W,E) is a tripartite graph (edges
go only between the disjoint sets U and V , U and W , and V and W ) in which
all three pairs (U, V ), (U,W ) and (V,W ) ε-regular, then, denoting the edge
densities by κ = d(U, V ), λ = d(U,W ) and µ = d(V,W ),

#triangles in G > (κλµ− 5ε− 7ε3)|U | · |V | · |W |.

Proof. The inequality holds trivially if one of the densities is smaller than 2ε
(then κλµ−5ε−ε3 < 2ε−5ε−7ε3 < 0). We therefore assume that κ, λ, µ ≥ 2ε.
Let

U1 = {u ∈ U | |ΓV (u)| ≤ (κ− ε)|V |}, U2 = {u ∈ U | |ΓW (u)| ≤ (κ− ε)|W |}.

By Lemma 4.4.2, |U1|, |U2| < ε|U |. Thus the set U0 = U\(U1 ∪ U2) satisfies
|U0| ≥ (1− 2ε)|U | and if u ∈ U0 then

|ΓV (u)| > (κ− ε)|V | and |ΓW (u)| > (λ− ε)|W |.

Because κ − ε, λ − ε ≥ ε and the pair (V,W ) is ε-regular, for every u ∈ U0 we
have

e(ΓV (u),ΓW (u)) > (µ− ε)|ΓV (u)| · |ΓW (u)|.

This is a lower bound on the number of triangles with one vertex being u because
every edge joining ΓV (u) and ΓW (u) forms together with u a triangle. Summing
over U0 we get the lower bound

#triangles in G >
∑
u∈U0

e(ΓV (u),ΓW (u)) > (µ− ε)
∑
u∈U0

|ΓV (u)| · |ΓW (u)|

> (µ− ε)|U0| · (κ− ε)|V | · (λ− ε)|W |
> (1− 2ε)(κ− ε)(λ− ε)(µ− ε)|U | · |V | · |W |
> (κλµ− 5ε− 7ε3)|U | · |V | · |W |.
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2

The following decomposition of large graphs into ε-regular pairs, the regu-
larity lemma of E. Szemerédi (1941), is one of the most important results in
graph theory.

Theorem 4.4.4 (Szemerédi, 1975) For every ε ∈ (0, 1) and every m ∈ N,
there exists an M ∈ N, M ≥ m, such that the vertex set of every graph G =
(V,E) with |V | = n ≥ m vertices can be partitioned into r nonempty sets

V = V1 ∪̇ V2 ∪̇ . . . ∪̇ Vr

so that (i) m ≤ r ≤ M , (ii) the cardinalities |Vi| differ among themselves at
most by 1 (hence bn/rc ≤ |Vi| ≤ dn/re), and (iii) all but at most ε

(
r
2

)
pairs

(Vi, Vj), 1 ≤ i < j ≤ r, are ε-regular.

If m ≤ |V | ≤ M the partition of V into singletons has the required properties.
The theorem is interesting only for large graphs with |V | > M . We prove the
theorem in the next section. For an equivalent formulation see Proposition 4.5.2.

Given a parameter h > 0 and a partition of V described in the regularity
lemma, we say that an edge e in G is h-good (with respect to the partition), if e
joins two parts Vi and Vj such that the pair (Vi, Vj) is ε-regular and d(Vi, Vj) ≥ h.
Remaining edges of G are called h-bad.

Lemma 4.4.5 The number of h-bad edges does not exceed

2(1/m+ ε+ h)n2.

Proof. An edge e is h-bad if and only if it lies inside one part Vi or joins
two distinct parts Vi and Vj such that the pair (Vi, Vj) is not ε-regular or has
d(Vi, Vj) < h. Thus the number of h-bad edges is at most

r

(
dn/re

2

)
+ ε

(
r

2

)
dn/re2 + h

(
r

2

)
dn/re2.

From n/r > M/M = 1 we have dn/re ≤ 2n/r. This and r ≥ m implies the
stated bound. 2

Proof of Proposition 4.3.1. We prove that if G = (V,E) is a graph on n
vertices containing > δn2 edge-disjoint triangles and n is big (depending on
δ > 0), then

#triangles in G > κn3

for some constant κ > 0 depending only on δ.
Let δ > 0 be given. We fix sufficiently small ε > 0 and sufficiently large

m ∈ N such that
2(1/m+ ε+ (6ε+ 7ε3)1/3) < δ.
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Let M ∈ N be the constant corresponding to these ε and m in Theorem 4.4.4
and let G = (V,E) be any graph that has n > 2M vertices and contains more
than δn2 edge-disjoint triangles. We consider the partition V = V1∪V2∪· · ·∪Vr,
m ≤ r ≤M , ensured by the regularity lemma and delete from G all h-bad edges,
where

h = (6ε+ 7ε3)1/3.

By Lemma 4.4.5 and by the selection of ε and m, the resulting graph G′ still
contains at least one of the edge-disjoint triangles (their edge sets are disjoint
and to get rid of all of them, we have to delete more than δn2 edges). Since
G′ consists only of h-good edges, this implies that in the partition of G there
are three parts Vi, Vj , and Vk, 1 ≤ i < j < k ≤ r, such that all three pairs
(Vi, Vj), (Vi, Vk), and (Vj , Vk) are ε-regular and their edge densities are ≥ h. By
Lemma 4.4.3 and by bn/rc > n/2M , in the tripartite graph H induced by G on
Vi ∪ Vj ∪ Vk,

#triangles in H > (h3 − 5ε− 7ε3)|Vi| · |Vj | · |Vk|
> εbn/rc3

> (ε/8M3)n3.

Thus the proposition holds with κ = ε/8M3. 2

4.5 Proof of Szemerédi’s regularity lemma

We prove Theorem 4.4.4. We start with estimates on change in regularity caused
by perturbing parts in a pair; we prove only a restricted result sufficient for our
purposes.

Proposition 4.5.1 Let G = (V,E) be a graph, (X1, X2) be an ε-regular pair
in G and X ′1, X

′
2 be two nonempty and disjoint subsets of V .

1. Let b = min(|X1|, |X2|) ≥ 1. If X ′i = Xi or X ′i is obtained from Xi by
deleting one vertex then (X ′1, X

′
2) is an ε′-regular pair with

ε′ = 2ε+ 4b−1.

2. Let δ ∈ (0, 1). If X ′i is obtained from Xi by adding at most δ|Xi| vertices
then (X ′1, X

′
2) is an ε′-regular pair with

ε′ = ε+ 12δε−1.

Proof. 1. It is easy to see that

| |X ′1| · |X ′2| − |X1| · |X2| | , |e(X ′1, X ′2)− e(X1, X2)| < |X1|+ |X2|.
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From this and e(X ′1, X
′
2) ≤ |X ′1| · |X ′2| we deduce that

|d(X ′1, X
′
2)− d(X1, X2)| =

∣∣∣∣ e(X ′1, X ′2)
|X ′1| · |X ′2|

− e(X1, X2)
|X1| · |X2|

∣∣∣∣
< e(X ′1, X

′
2)
∣∣∣∣ 1
|X ′1| · |X ′2|

− 1
|X1| · |X2|

∣∣∣∣+
|X1|+ |X2|
|X1| · |X2|

≤ | |X ′1| · |X ′2| − |X1| · |X2| |
|X1| · |X2|

+
|X1|+ |X2|
|X1| · |X2|

< 2
(
|X1|−1 + |X2|−1

)
≤ 4b−1.

For i = 1, 2 consider arbitrary sets Y ′i ⊂ X ′i satisfying |Y ′i | ≥ 2ε|X ′i|. We have
Y ′i ⊂ Xi and

|Y ′i |
|Xi|

≥ |Y ′i |
|X ′i|+ 1

=
|Y ′i | · |X ′i|−1

1 + |X ′i|−1
≥ ε.

Using the estimate on change in edge density and the ε-regularity of (X1, X2)
we get

|d(X ′1, X
′
2)− d(Y ′1 , Y

′
2)| ≤ |d(X ′1, X

′
2)− d(X1, X2)|+ |d(X1, X2)− d(Y ′1 , Y

′
2)|

< 4b−1 + ε.

Since ε′ is larger than this and 2ε, (X ′1, X
′
2) is an ε′-regular pair.

2. Now

| |X ′1| · |X ′2| − |X1| · |X2| | , |e(X ′1, X ′2)− e(X1, X2)| ≤ (2δ + δ2)|X1| · |X2|

and as in part 1 we get

|d(X ′1, X
′
2)− d(X1, X2)| ≤ 2(2δ + δ2) ≤ 6δ.

This is independent of the ε-regularity of (X1, X2). For i = 1, 2 consider arbi-
trary sets Y ′i ⊂ X ′i satisfying |Y ′i | ≥ (ε + δ)|X ′i| and set Yi = Y ′i ∩ Xi. Then
Yi ⊂ Xi,

|Yi|
|Xi|

≥ |Y
′
i | − δ|Xi|
|Xi|

≥ |Y
′
i |
|X ′i|

− δ ≥ ε

and Yi ⊂ Y ′i , |Y ′i |/|Yi| ≤ 1 + δ|Xi|/|Yi| ≤ 1 + δε−1. Using twice the esti-
mate on change in edge density and the ε-regularity of (X1, X2) we see that
|d(X ′1, X

′
2)− d(Y ′1 , Y

′
2)| is at most

|d(X ′1, X
′
2)− d(X1, X2)|+ |d(X1, X2)− d(Y1, Y2)|+ |d(Y1, Y2)− d(Y ′1 , Y

′
2)|

< 6δ + ε+ 6δε−1 < ε+ 12δε−1.

Since ε′ is at least this and ε+ δ, (X ′1, X
′
2) is an ε′-regular pair. 2

We will consider families of nonempty and disjoint subsets X1, X2, . . . , Xr

of a vertex set in a graph. For ε ∈ (0, 1) and a graph G = (V,E), we call
such family of subsets of V ε-regular if all but at most ε

(
r
2

)
pairs (Xi, Xj),

1 ≤ i < j ≤ r, are ε-regular. We prove equivalence of two common formulations
of the regularity lemma. The first only restates Theorem 4.4.4 but the proof
uses the second formulation.
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Proposition 4.5.2 The following two assertions are equivalent.

1. For every ε ∈ (0, 1) and every m ∈ N, there exists an M ∈ N, M ≥ m,
with the property that the vertex set of any graph G = (V,E) with |V | ≥ m
contains an ε-regular family of subsets X1, X2, . . . , Xr such that

m ≤ r ≤M,

r⋃
i=1

Xi = V and |X1| ≥ |X2| ≥ · · · ≥ |Xr| ≥ |X1| − 1.

2. For every ε ∈ (0, 1) and every m ∈ N, there exists an M ∈ N, M ≥ m,
with the property that the vertex set of any graph G = (V,E) with |V | ≥ m
contains an ε-regular family of subsets X1, X2, . . . , Xr such that

m ≤ r ≤M,

∣∣∣∣∣V \
r⋃
i=1

Xi

∣∣∣∣∣ < ε|V | and |X1| = |X2| = · · · = |Xr|.

Proof. We know that 1 and 2 are trivially true if |V | ≤M ; there is something
to prove only for |V | > M which we will assume.

We suppose that 1 holds and derive 2. Let ε2 ∈ (0, 1) and m2 ∈ N be given.
Let M1 be the value of M ensured by 1 for ε1 = ε2/2 and m1 = m2. We fix
M2 ∈ N so large that M2 ≥ M1, ε1 + 4(bM2/M1c)−1 < ε2 and M1/M2 < ε2.
Let G = (V,E) be any graph with |V | > M2. We take the ε1-regular family
X1, X2, . . . , Xr with properties stated in 1. Note that min |Xi| ≥ b|V |/rc ≥
bM2/M1c. We obtain the family Y1, Y2, . . . , Yr by deleting one vertex from the
Xi with |Xi| > |Xr|. Clearly, m2 = m1 ≤ r ≤ M1 ≤ M2 and all Yi have equal
cardinality. By 1 of Proposition 4.5.1, Y1, Y2, . . . , Yr is an ε′-regular family where
ε′ = ε1 + 4(bM2/M1c)−1 < ε2. The number of vertices in V not covered by the
Yis is smaller than r ≤ M1 < ε2|V |. Therefore M2 and Y1, Y2, . . . , Yr have the
properties required by 2 for ε2 and m2.

Conversely, we suppose that 2 holds and derive 1. Let ε1 ∈ (0, 1) and m1 ∈ N
be given. Let M2 be the value of M ensured by 2 for ε2 = min( 1

2 , ε1/7) and
m2 = max(m1, 12ε−2

2 ). We fix M1 ∈ N so that M1 ≥ 2M2. Let G = (V,E)
be any graph with |V | > M1. We take the ε2-regular family X1, X2, . . . , Xr

with properties stated in 2. Hence |X1| = · · · = |Xr| = t. To obtain the family
Y1, Y2, . . . , Ys, we start with the Xis, partition V \X1 ∪ · · · ∪Xr arbitrarily into
u ≤ r sets Zi with size t and a set R with less than t elements, and distribute
the elements of R one by one to the sets X1, X2, . . . , Xr, Z1, Z2, . . . , Zu in this
cyclic order. The resulting s = r + u ≤ 2r sets Y1, Y2, . . . , Ys are disjoint, cover
the whole V and |Y1| ≥ |Y2| ≥ · · · ≥ |Ys| ≥ |Y1|−1. For 1 ≤ i ≤ r is Yi obtained
from Xi by adding at most t/s ≤ t/r ≤ t/m2 vertices. Also, m1 ≤ m2 ≤ r ≤
s = r + u ≤ 2M2 ≤ M1. We consider the pairs (Yi, Yj), 1 ≤ i < j ≤ s. If j ≤ r
and (Xi, Xj) was an ε2-regular pair, 2 of Proposition 4.5.1 for δ = 1/m2 tells us
that (Yi, Yj) is ε′-regular with ε′ = ε2 + 12/m2ε2 ≤ 2ε2. The number of other
pairs (Yi, Yj) is bounded by ε2

(
r
2

)
+ ru +

(
u
2

)
≤
(
s
2

)
(ε2 + 5ε2 + 2ε22) ≤ 7ε2

(
s
2

)
because r ≤ s and u < ε2|V |/t ≤ 2ε2(1 − ε2)|V |/t < 2ε2r. Thus Y1, Y2, . . . , Ys
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is ε1-regular as ε1 is at least 7ε2 and 2ε2. Therefore M1 and Y1, Y2, . . . , Ys have
the properties required by 1 for ε1 and m1. 2

After these preparations we finally begin with the proof of Theorem 4.4.4
in the formulation of part 2 of the previous Proposition. For a family P =
{X1, X2, . . . , Xr} of disjoint subsets of a vertex set V of a graph G = (V,E) we
define its energy q(P ) as

q(P ) =
∑

1≤i<j≤r

e(Xi, Xj)2

|Xi| · |Xj |
=

∑
1≤i<j≤r

d(Xi, Xj)e(Xi, Xj).

Clearly, 0 ≤ q(P ) ≤
(|V |

2

)
< |V |2. By P ∗ we denote the completion of P to

a partition of V obtained by adding vertices not covered by the Xis to P as
singleton parts. Theorem 4.4.4 follows from the next Proposition.

Proposition 4.5.3 Suppose that G = (V,E) is a graph, ε ∈ (0, 1
4 ) and P =

{X1, X2, . . . , Xr} is a family of disjoint subsets of V with equal sizes that does
not cover less than ε|V | vertices of V and is not ε-regular. Then there is another
family Q = {Y1, Y2, . . . , Ys} of disjoint subsets of V with equal sizes such that

r ≤ s ≤ r8r,

∣∣∣∣∣V \
s⋃
i=1

Yi

∣∣∣∣∣ <
∣∣∣∣∣V \

r⋃
i=1

Xi

∣∣∣∣∣+
|V |
2r

and q(Q∗) ≥ q(P ∗) +
|V |2ε5

8
.

Proof Theorem 4.4.4. We prove the claim in part 2 of Proposition 4.5.2.
Let ε ∈ (0, 1

4 ) and m ∈ N be given. We set t = b8/ε5c, enlarge m so that
1/(m + 1) < ε/2 and t/2m < ε/2, and fix M ∈ N so large that M ≥ (m + 1)2

and M ≥ at where the numbers ai are given by a1 = m and ai+1 = ai8ai . Now
let G = (V,E) be any graph with |V | > M (for m ≤ |V | ≤ M the claim holds
trivially due to the partition of V into |V | singletons). We partition V arbitrarily
into m disjoint sets X1, X2, . . . , Xm of the same size t = d|V |/(m + 1)e and a
residual set R with size |V |/(m+ 1)−m ≤ |V | −mt = |R| ≤ |V |/(m+ 1). Due
to the selection of M this is possible and the Xi do not cover < (ε/2)|V | of the
vertices.

We start with the family X1, X2, . . . , Xm and apply repeatedly Proposi-
tion 4.5.3 — until ε-regularity is achieved, we keep replacing the old non-ε-
regular family X1, X2, . . . , Xr with r ≥ m disjoint and equal sized subsets of V
that do not cover < ε|V | of the vertices by a new family Y1, Y2, . . . , Ys of the
same type but with r ≤ s ≤ r8r sets, energy larger by at least |V |2ε5/8 and
proportion of uncovered vertices larger by at most 1/2m. By the selection of m,
if the number of applications does not exceed t then proportion of uncovered
vertices remains under ε and Proposition 4.5.3 may be used. Since energy can-
not increase above |V |2, it may increase by at least |V |2ε5/8 at most t times.
Thus at the last after the t-th application of Proposition 4.5.3 we arrive at the
desired ε-regular family of at least m and at most M equal sized disjoint subsets
of V that do not cover less than ε|V | of the vertices. In view of Proposition 4.5.2
this proves Theorem 4.4.4. 2
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It remains to prove Proposition 4.5.3. For the proof we need a more general
notion of energy of a family P = {X1, X2, . . . , Xr} of disjoint subsets of a vertex
set V of a graph G = (V,E). Suppose that in addition R is a partition of P
given by the equivalence relation ∼. We define

q(P,R) =
∑

Xi 6∼Xj

e(Xi, Xj)2

|Xi| · |Xj |

—we omit from the sum of q(P ) the pairs of equivalent set. Clearly, q(P ) ≥
q(P,R) for any R.

Now we prove that refining a family does not decrease its energy. More
precisely, suppose that P = {X1, X2, . . . , Xr} and Q = {Y1, Y2, . . . , Ys} are two
families of disjoint subsets of a vertex set V of a graph G = (V,E) such that Q
refines P , which means that every Xj is a union of several sets Yi, and R is a
partition of P into two blocks. R induces naturally a partition S of Q into two
blocks. We show that

q(Q,S) ≥ q(P,R).

In fact, it suffices to prove this only in the case when r = 2, s = 3, X1 = Y1,
X2 = Y2 ∪ Y3 and R has blocks {X1} and {X2} (so S has blocks {Y1} and
{Y2, Y3}). Indeed, P can be transformed into Q by a series of splits that divide
one set into two and after each split the contribution to q from the affected pairs
is a sum of elementary contributions of the described type. Thus it suffices to
show that

e(Y1, Y2)2

|Y1| · |Y2|
+
e(Y1, Y3)2

|Y1| · |Y3|
≥ e(X1, X2)2

|X1| · |X2|
.

This is easy to verify remembering that |X1| = |Y1|, |X2| = |Y2| + |Y3| and
e(X1, X2) = e(Y1, Y2) + e(Y1, Y3); it is more or less the inequality α + α−1 ≥ 2
for α > 0 in disguise.

Next we consider a non-ε-regular pair P = (X,Y ) in a graph G = (V,E) and
show that it can be refined into disjoint sets Q = {X1, X2, Y1, Y2}, X = X1∪X2

and Y = Y1 ∪ Y2, so that, denoting S the partition of Q with blocks {X1, X2}
and {Y1, Y2},

q(Q,S) ≥ q(P ) + ε4|X| · |Y |.

We expectedly select X1 ⊂ X and Y1 ⊂ Y so that |X1| ≥ ε|X|, |Y1| ≥ ε|Y | and

η = d(X1, Y1)− d(X,Y )

satisfies |η| ≥ ε, and set X2 = X\X1, Y2 = Y \Y1. We denote x = |X|, y = |Y |,
e = e(X,Y ), xi = |Xi|, yi = |Yi| and eij = e(Xi, Yj). The Cauchy–Schwarz
inequality with n-tuples ai ≥ 0 and bi > 0,(

n∑
i=1

ai

)2

=

(
n∑
i=1

(ai/b
1/2
i ) · b1/2i

)2

≤
n∑
i=1

a2
i /bi ·

n∑
i=1

bi,
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provides the inequality
n∑
i=1

a2
i /bi ≥

(
∑n
i=1 ai)

2∑n
i=1 bi

.

With its help and using η = e11/x1y1 − e/xy we see that q(Q,S) equals

e211
x1y1

+
∑
i+j>2

e2ij
xiyj

≥ e211
x1y1

+
(e− e11)2

xy − x1y1

=
1

x1y1

(
x1y1e

xy
+ ηx1y1

)2

+
1

xy − x1y1

(
xy − x1y1

xy
e− ηx1y1

)2

=
x1y1e

2

x2y2
+

2eηx1y1
xy

+ η2x1y1 +
xy − x1y1
x2y2

e2 − 2eηx1y1
xy

+
η2x2

1y
2
1

xy − x1y1

≥ e2

xy
+ η2x1y1 ≥ q(P ) + ε4xy.

Let ε ∈ (0, 1
4 ) and P = {X1, X2, . . . , Xr} be a non-ε-regular family of disjoint

sets with equal sizes in a graph G = (V,E) with |V \(X1∪· · ·∪Xr)| < ε|V |; hence
r ≥ 2. Let N be the set of at least ε

(
r
2

)
non-ε-regular pairs in P . As we have

just shown, for every p = (Xi, Xj) ∈ N , 1 ≤ i < j ≤ r, there are partitions Ai,p
and Aj,p of Xi and Xj , respectively, into two sets such that if we refine by them
the parts of p, energy increases by ≥ ε4|Xi| · |Xj | ≥ ε4(3|V |/4r)2 > ε4|V |2/2r2.
Generally, for every two partitions A and B of the same set X there is a partition
C of X that refines both of them and has at most |A| · |B| parts. Thus there
exists a refinement P0 = {X ′1, X ′2, . . . , X ′r0} of P with the property that every Xi

is in P0 partitioned in at most 2r−1 sets X ′j so that this partition refines every
partition Ai,p for p running through N . This refinement defines a partition R
of P0 putting the X ′js partitioning the same Xi in one block, which naturally
extends to a partition of P ∗0 . It follows that r ≤ r0 ≤ r2r−1 and, using the
monotonicity of energy to refinements, that

q(P ∗0 ) ≥ q(P ∗0 , R) ≥ q(P ∗) + ε

(
r

2

)
ε4|V |2/2r2 ≥ q(P ∗) + ε5|V |2/8

because
(
r
2

)
≥ r2/4 for r ≥ 2. The family P0 only lacks equal sizes of sets. If c

is the common size of sets in P , we set

d = dc/4re ≥ 1

and define the desired family Q = {Y1, Y2, . . . , Ys} as the maximum family of
disjoint subsets of V such that each Yi has size d and is contained in some set
X ′j of P0. It follows that Q∗ refines P ∗0 and therefore

q(Q∗) ≥ q(P ∗0 ) ≥ q(P ∗) + ε5|V |2/8.

Obviously, Q has all sets with equal size d. By the maximality of Q, from every
X ′j only at most d − 1 vertices are not used in any Yi and therefore Yi do not
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cover less than∣∣∣∣∣V \
r⋃
i=1

Xi

∣∣∣∣∣+ (d− 1)r0 <

∣∣∣∣∣V \
r⋃
i=1

Xi

∣∣∣∣∣+ (c/4r)r2r−1 <

∣∣∣∣∣V \
r⋃
i=1

Xi

∣∣∣∣∣+ |V |/2r

vertices. As for the number of sets in Q, we have

r ≤ s ≤ r2r−1 · 4r < r8r.

The lower bound follows from the fact that every Xj contains some Yi because
some X ′t ⊂ Xj has size ≥ dc/2r−1e ≥ d. The upper bound follows from the fact
that at most bc/dc ≤ c/(c/4r) = 4r sets Yi are contained in one X ′j . Thus Q
has all required properties. This finishes the proof of Proposition 4.5.3 and of
Szemerédi’s regularity lemma.

4.6 Remarks

Roth’s theorem on arithmetic progressions was proved in [39] (see also [40]). The
analytic proof of Roth’s theorem follows the expositions in Newman [34, Chapter
4] and Pollack [36, Chapter 6]. The combinatorial proof is taken from Gowers’
exposition in [17]. The proof of Szemerédi’s regularity lemma in formulation 2
of Proposition 4.5.2 is taken from Diestel [11, Chapter 7.4]
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[15] P. Erdős, review MR0046374 for Mathematical Reviews, 1952.

[16] A. O. Gelfond and Yu. V. Linnik, Elementary Methods in Analytic Number
Theory, Fizmatgiz, Moscow, 1962 (Russian).

[17] T. Gowers, Quasirandomness, counting and regularity for 3-uniform hyper-
graphs, Combin. Probab. Comput. 15 (2006) 143–184.

[18] T. Gowers, Vinogradov’s three-primes theorem, available at
http://www.dpmms.cam.ac.uk/~wtg10/

[19] J. G. Hermoso, An elementary proof of Dirichlet’s theorem on primes in
arithmetic progression, manuscript, 2002, 30 pp., available at
http://math.arizona.edu/~savitt/teaching/nt/projects/

[20] E. Hlawka, J. Schoißengaier and R. Taschner, Geometric and Analytic
Number Theory, Springer, 1991.

[21] K. Ireland and M. Rosen, A Classical Introduction to Modern Number The-
ory, Springer 1990.

[22] H. Iwaniec and E. Kowalski, Analytic Number Theory, AMS 2004.

[23] P. Jorgensen, quotes, available at
http://www.cs.uiowa.edu/~jorgen/quotes.html

[24] A. A. Karacuba, Basic Analytic Number Theory, Springer, 1988.

[25] M. Klazar, Analytic and Combinatorial Number Theory II. Lecture Notes,
KAM-DIMATIA Series 2010-969, 2010.

[26] S. Lang, Algebra, Springer, 2002 (3rd edition).

[27] H. B. Mann, A proof of the fundamental theorem on the density of sums of
sets of positive integers, Ann. Math. 43 (1942) 523–527.

[28] P. Monsky, Simplifying the proof of Dirichlet’s theorem, Amer. Math.
Monthly 100 (1993) 861–862.

[29] H. L. Montgomery and R. C. Vaughan, Multiplicative number theory. I.
Classical theory, Cambridge University Press, Cambridge, 2007.

[30] W. Narkiewicz, The development of prime number theory. From Euclid to
Hardy and Littlewood, Springer, 2000.

[31] M. B. Nathanson, Additive Number Theory: The Classical Bases, Springer,
1996.

75



[32] M. B. Nathanson, Elementary Methods in Number Theory, Springer, 2000.

[33] D. J. Newman, Simple analytic proof of the prime number theorem, Amer.
Math. Monthly 87 (1980) 693–696.

[34] D. J. Newman, Analytic Number Theory, Springer, Berlin, 1998.

[35] J. Pintz, Landau’s problems on primes, 43 pp.,
available at http://www.renyi.hu/~pintz/

[36] P. Pollack, Not Always Burried Deep. Selections from Analytic and Com-
binatorial Number Theory, manuscript, 2004, 306 pp., available at
http://www.math.dartmouth.edu/~ppollack/notes.pdf

[37] P. Pollack, Not Always Burried Deep: A Second Course in Elementary
Number Theory, AMS, 2009.
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