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Notation

(a, b) . . . . . . . . . . . . . . . . . . . . . . . . . . the greatest common divisor or an ordered pair
a | b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .a divides b
con(α) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . conjugates of α, p. 29
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . complex numbers
χ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . characters of finite abelian groups, p. 15
deg(·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the degree of a polynomial
exp(z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∑
n≥0 z

n/n!
ϕ(m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the Euler function, p. 16
G∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the group of characters of G, p. 15
G(K). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .embeddings of K in C, p. 29
h(α). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .the size of α, p. 30
KI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .K-integers, p. 30
[L : K] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the degree of L over K, p. 27
Λ(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . von Mangoldt function, p. 19
µ(m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Möbius function, p. 19
N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .{1, 2, 3, . . . }
N0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .{0, 1, 2, . . . }
ordp(a/b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the order of p in a/b, p. 22
p, q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . in Chapter 2 denote prime numbers
‖P‖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the norm of a polynomial, p. 4
Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of rational numbers
R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of real numbers
|X|, #X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the cardinality of a set or sequence
Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the integers, {. . . ,−2,−1, 0, 1, 2, . . . }
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Chapter 1

Thue’s theorem on
Diophantine equations

OM

EN GENEREL I STORE HELE TAL

ULØSBAR LIGNING

Theorem.

Er F (x) en hvilkensomhelst hel irreduktibel funktion i x med hele
koefficienter og af r’te grad, hvor r > 2, da har ligningen

qrF (pq ) = c · · · · · · · · · · (1)

hvor c er et vilkaarlig opgivet helt tal, kun et begrændset antal løs-
ninger i hele tal p og q.

beginning of the article [40] of A. Thue, by [43, pp. 219–231]

Über Annäherungswerte algebraischer Zahlen.

Von Herrn Axel Thue in Kristiania.

—————————

Theorem I. Bedeutet ρ eine positive Wurzel einer ganzen Funktion
vom Grade r mit ganzen Koeffizienten, so hat die Relation
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(1.) 0 < |qρ− p| < c

q
r
2 +k

,

wo c und k zwei beliebig gegebene positive Größen bezeichnen, nich unendlich
viele Auflösungen in ganzen positiven Zahlen p und q.

( . . . )

Theorem IV. Die Gleichung

U(p, q) = c,

wo c eine gegebene Konstante ist, während U eine in bezug auf p und q
ganze homogene und irreduktible Funktion mit ganzen Koeffizienten bedeutet,
besitzt nicht unendlich viele Auf lösungen in ganzen positiven Zahlen p und q,
wenn der Grad von U größer als 2 ist.

parts of the article [41] of A. Thue, by [43, pp. 232–253]

In 1908, Norwegian mathematician Axel Thue (1863–1922) proved in [40] a deep
result on finiteness of solution sets of a large class of Diophantine equations,
nowadays called after him Thue equations.

Theorem 1.0.1 (Thue, 1908) The Diophantine equation

P (x, y) = adx
d + ad−1x

d−1y + ad−2x
d−1y2 + · · ·+ a1xy

d−1 + a0y
d = m

with the unknowns x, y, where ai,m ∈ Z, d ≥ 3 and the homogeneous polynomial
P (x, y) is nonzero and irreducible in Z[x, y], has only finitely many integral
solutions x, y ∈ Z.

Thue reproved it in the next year in his famous article [41] where he derived it
from a theorem on approximation of algebraic numbers by fractions.

Theorem 1.0.2 (Thue’s inequality, 1909) Let α ∈ C be an algebraic num-
ber with degree d ∈ N and let ε ∈ (0, 1

2 ). Then only finitely many fractions
p
q ∈ Q satisfy inequality ∣∣∣∣α− p

q

∣∣∣∣ < 1
q1+ε+d/2

.

In other words, there is a constant c = c(α, ε) > 0 such that every fraction
p
q 6= α satisfies inequality ∣∣∣∣α− p

q

∣∣∣∣ > c

q1+ε+d/2
.

2



We shall prove Theorem 1.0.2 and thus Theorem 1.0.1 in Section 1.2. In Section
1.1 we collect auxiliary results.

Theorem 1.0.2 is deep and difficult when α ∈ R and d ≥ 3, else one easily
proves even stronger bounds. If α ∈ C\R then |α − p

q | ≥ Im(α) > 0. If α ∈ R
has degree d = 1 then α = a

b ∈ Q and for p
q 6= α we have |α − p

q | ≥
1
qb . If

α ∈ R has degree d = 2 then there is an α′ ∈ R, α′ 6= α, such that P (x) =
x2 + ax + b = (x − α)(x − α′) has rational coefficients a, b. For every p

q ∈ Q,
as α and α′ are irrational, P (pq ) 6= 0 and thus |P (pq )| ≥ 1

kq2 where k ∈ N is a
common denominator of a and b. Hence, denoting δ = |α − α′| > 0, for every
fraction p

q we have

∣∣∣∣α− p

q

∣∣∣∣

≥ 1 if |α− p/q| ≥ 1

= |P (p/q)|
|α′−p/q| >

1
(1+δ)kq2 if |α− p/q| < 1,

which is stronger than the bound in Theorem 1.0.2 for d = 2. This argument
easily generalizes and gives Liouville’s inequality (Liouville, 1844, [24]): if α ∈ R
is algebraic with degree d then for any fraction p

q 6= α,∣∣∣∣α− p

q

∣∣∣∣ > c

qd

where c > 0 depends only on α. For d ≥ 3 this is weaker than Thue’s inequality
in Theorem 1.0.2 and indeed too weak to yield Theorem 1.0.1. As we will see
in 2 of Proposition 1.1.5, any strengthening of Liouville’s inequality replacing c
with a function going to infinity with q gives Theorem 1.0.1. Thue’s inequality
is easiest such strengthening known.

Theorem 1.0.1 is trivial for m = 0, with no integral solution, since by the
irreducibility P (z, 1) =

∑d
i=0 aiz

i, d ≥ 2, does not have rational roots. Equa-
tion with general homogeneous polynomial P (x, y) reduces to the case when
it is irreducible because if P = P1P2 in Z[x, y] then Pi are homogeneous and
P (p, q) = m with p, q ∈ Z implies that Pi(p, q) = mi where mi is a divisor of
m if m 6= 0 or mi = 0. Thus P (x, y) = m reduces to finitely many equations
P1(x, y) = m1 with P1 an irreducible divisor of P in Z[x, y] and m1 a divisor
of m or m1 = 0. (We recall in part 2 of Proposition 1.1.4 that P is irreducible
in Z[x, y] iff it is irreducible in Q[x, y].) If P is irreducible with degree d ≤ 2,
the equation P (x, y) = m may have infinitely many integral solutions, for ex-
ample if P (x, y) = ax + by and (a, b) divides m or if it is the Pell equation
x2 − ay2 = 1 with non-square a ∈ N. Finally, we remark that the reduction of
Theorem 1.0.1 to Theorem 1.0.2 proves more generally finiteness of solutions of
equations P (x, y) = Q(x, y) where Q ∈ Z[x, y] is any polynomial with degree
smaller than d/2− 1, indeed any integral function satisfying a growth condition
(part 3 of Proposition 1.1.5).
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1.1 Polynomials, algebraic numbers, lemmas of
Siegel and Gauss

For j ∈ N0 and a polynomial a =
∑n
i=0 aix

i with ai ∈ C we set

‖a‖ = max
0≤i≤n

|ai| and Dja =
n∑
i=0

(
i

j

)
aix

i−j =
a(x)(j)

j!
.

So ‖a‖ is the largest modulus of a coefficient in a and Dj is the operator of
normalized j-th derivative by x. Clearly, Dj(αa+βb) = αDja+βDjb for every
α, β ∈ C and a, b ∈ C[x]. Dj increases the norm ‖ · ‖ only by an exponential
factor (claim 6 below), the factor deg(a)! obtained without division by j! would
be too big in applications.

Proposition 1.1.1 Let a =
∑m
i=0 aix

i and b =
∑n
i=0 bix

i, ambn 6= 0, be poly-
nomials with complex coefficients.

1. For every α ∈ C, |a(α)| ≤ (deg(a) + 1)‖a‖max(1, |α|)deg(a).

2. For every α, β ∈ C, ‖αa+ βb‖ ≤ |α| · ‖a‖+ |β| · ‖b‖.

3. One has ‖ab‖ ≤ (deg(a) + 1) · ‖a‖ · ‖b‖.

4. If a = (x− α)rb, where α ∈ C is nonzero and r ∈ N, then

‖b‖ < (deg(b) + 1)(2 max(1, |α|−1))deg(a)‖a‖.

5. If a ∈ Z[x] then Dja ∈ Z[x] for every j = 0, 1, . . . .

6. For every j = 0, 1, . . . , ‖Dja‖ ≤ 2deg(a)‖a‖.

Proof. 1. We have |a(α)| ≤
∑m
i=0 |ai| · |α|i ≤ ‖a‖

∑m
i=0 |α|i and the estimate

follows upon comparing 1 and |α|.
2. Now ‖αa + βb‖ = max0≤i≤m+n |αai + βbi| (where ai = 0 for i > m and

similarly for bi). Since |αai + βbi| ≤ |α| · |ai|+ |β| · |bi| ≤ |α| · ‖a‖+ |β| · ‖b‖, we
get the stated estimate.

3. The coefficient of xk in ab equals
∑
i+j=k aibj , a sum with at most m+ 1

nonzero summands. Its modulus is therefore at most (m + 1)‖a‖ · ‖b‖, which
gives the stated estimate.

4. In the ring of power series C[[x]] we have equality b = (x − α)−ra,
where (x − α)−r = (−α)−r(1 − x/α)−r = (−α)−r

∑
k≥0

(
k+r−1
k

)
(x/α)k. Thus

b = (−α)−r
∑n
k=0

(
k+r−1
k

)
(x/α)k ·a and the bound follows by part 3, using that(

k+r−1
k

)
< 2n+r and n+ r = m.

5 and 6. They follow from the fact that
(
i
j

)
∈ N and

(
i
j

)
≤ (1 + 1)i = 2i for

0 ≤ j ≤ i and
(
i
j

)
= 0 for j > i. 2

A number α ∈ C is algebraic if p(α) = 0 for a nonzero polynomial p ∈ Q[x];
if no such p exists we say that α is transcendental. We may assume that p is

4



monic (has leading coefficient 1) or that p ∈ Z[x] but, in general, not both. If p
has both properties, is a monic integral polynomial and p(α) = 0, we say that
α is an algebraic integer. The degree of an algebraic number α is the minimum
degree of a nonzero p ∈ Q[x] with p(α) = 0. Clearly, α has degree 1 iff α ∈ Q.
The minimum polynomial of an algebraic number α with degree d is the unique
monic polynomial p ∈ Q[x] such that p(α) = 0 and deg(p) = d. If α is an
algebraic integer then its minimum polynomial has in fact integral coefficients
(3 of Proposition 1.1.4).

Proposition 1.1.2 Let α ∈ C be an algebraic number.

1. For every k, l ∈ Q, k 6= 0, the number β = kα+ l is algebraic and has the
same degree as α.

2. There exists a k ∈ N, a denominator of α, such that kα is an algebraic
integer.

3. If α is an algebraic integer then so is α+ l for any l ∈ Z.

4. If α is an algebraic integer and p(α) = 0 for a monic polynomial p ∈ Z[x]
with degree d then for r = 0, 1, . . . we have expressions

αr =
∑d−1
i=0 cr,iα

i where cr,i ∈ Z with |cr,i| ≤ (1 + ‖p‖)r.

5. The minimum polynomial of α has only simple roots, is irreducible in Q[x]
and divides every q ∈ Q[x] with root α.

6. Every nonzero and irreducible polynomial p ∈ Q[x] with degree d has d
distinct roots which are all algebraic numbers with degree d.

7. If α has degree d and is an m-tuple root, m ≥ 1, of a nonzero polynomial
q ∈ Q[x] then deg(q) ≥ md.

Proof. 1. Since p(α) = 0 for a nonzero p ∈ Q[x], also q(β) = 0 where
q(x) = p((x − l)/k) ∈ Q[x] is nonzero and with deg(q) = deg(p). The inverse
relation α = k−1β − k−1l implies equality of degrees of α and β.

2. Let αn +
∑n−1
i=0 aiα

i = 0 where ai ∈ Q. Any common denominator
k ∈ N of the ais is a denominator of α because multiplication by kn gives
(kα)n +

∑n−1
i=0 aik

n−i(kα)i = 0 and aik
n−i ∈ Z.

3. Immediate from the fact that if p ∈ Z[x] is monic and l ∈ Z, then (due to
the binomial theorem) also q(x) = p(x− l) ∈ Z[x] and is monic.

4. Let p =
∑d
i=0 aix

i with ai ∈ Z and ad = 1. For r = 0 we set c0,0 = 1
and c0,i = 0 for 0 < i < d. Replacing αd with −

∑d−1
i=0 aiα

i, for r > 0 we get by
induction

αr = α · αr−1 =
∑d−1
i=0 (cr−1,i−1 − cr−1,d−1ai)αi, cr−1,−1 = 0.

Thus cr,i = cr−1,i−1−cr−1,d−1ai and by induction |cr,i| ≤ |cr−1,i−1|+ |cr−1,d−1| ·
|ai| ≤ (1 + max0≤j<d |aj |)r for every r = 0, 1, . . . and 0 ≤ i < d.
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5. Let p be the minimum polynomial of α. The minimality of its degree
with respect to p(α) = 0 implies its irreducibility. Division gives q = ap + b
with a, b ∈ Q[x] and deg(b) < deg(p) or b identically zero. Thus b(α) = 0 and
the latter must occur, p divides q. This division property shows that p is the
minimum polynomial of its each root, not just of α. Hence each root of p is
simple, cannot be a root of p′.

6 and 7. Follow from the division property in 5. 2

Proposition 1.1.3 (Siegel’s lemma) Any system of m homogeneous linear
equations with n unknowns

n∑
j=1

ai,jxj = 0, 1 ≤ i ≤ m,

in which n > m and ai,j ∈ Z with |ai,j | ≤ A for every i, j, has an integral solu-
tion (α1, . . . , αn) ∈ Zn such that not all αj are zero and |αj | ≤ b(nA)m/(n−m)c
for every j.

Proof. Let fi =
∑n
j=1 ai,jxj be the form in the i-th equation and let ai =∑n

j=1 max(0, ai,j), bi =
∑n
j=1 min(0, ai,j). For r ∈ N0 there are (r + 1)n tuples

(x1, . . . , xn) in the box {0, 1, . . . , r}n of arguments, and the values (f1, . . . , fm)
of the m forms on them fall in the box

∏m
i=1{bir, bir+ 1, . . . , air} that contains∏m

i=1(rai − rbi + 1) ≤ (rnA + 1)m tuples. If (rnA + 1)m < (r + 1)n, by the
pigeon-hole principle two distinct n-tuples are mapped by the forms to the
same m-tuple. Their difference, which we denote (α1, . . . , αn), is mapped by
the forms to the m-tuple of zeros, has |αi| ≤ r and not all αi are zero. We check
that r = b(nA)m/(n−m)c satisfies the required inequality and are done: since
r + 1 > (nA)m/(n−m), indeed (r + 1)n > ((r + 1)nA)m > (rnA+ 1)m. 2

An integral polynomial
∑n
i=0 aix

i ∈ Z[x] is primitive if its coefficients are
together coprime, no integer greater than 1 divides every ai. Claims 1 and 2
below are known as Gauss lemma.

Proposition 1.1.4 Integral and rational polynomials have the following prop-
erties.

1. If a, b ∈ Z[x] are primitive then so is their product ab.

2. If a ∈ Z[x] and is primitive, b ∈ Q[x] and ab ∈ Z[x] then b ∈ Z[x] too.
Consequently, if c ∈ Z[x] is irreducible in Z[x] then it is irreducible in
Q[x].

3. The minimum polynomial of an algebraic integer has integral coefficients.

4. If a ∈ Z[x] has leading coefficient l ∈ N and a root p
q ∈ Q, (p, q) = 1, with

multiplicity m ∈ N then qm ≤ l.

6



Proof. 1. Let a =
∑m
i=0 aix

i, b =
∑n
i=0 bix

i, p be a prime number and ak, bl
be the coefficients with least indices that are not divisible by p. The coefficient
of xk+l in ab equals akbl +

∑k−1
i=0 aibk+l−i +

∑l−1
i=0 ak+l−ibi. This is not divisible

by p either because akbl is not divisible by p but each summand in the two sums
is divisible by p. Thus ab is primitive as no prime divides all its coefficients.

2. We put the coefficients in b in the lowest terms a denote by k ∈ N their
least common denominator. It follows that kb ∈ Z[x] and is primitive. The
equality a · kb = kab implies by the previous result that k = 1 and so b ∈ Z[x].
Let c ∈ Z[x] and c = ab with a, b ∈ Q[x]. For appropriate k ∈ N is ka ∈ Z[x]
and is primitive. Then c = (ka)(k−1b) and, as we know, k−1b ∈ Z[x] as well.
Thus reducibility of c in Q[x] implies its reducibility in Z[x].

3. Let α ∈ C be an algebraic integer, q ∈ Z[x] be monic with q(α) = 0 and
p ∈ Q[x] be the minimum polynomial. Then q = pa for some a ∈ Q[x] (by 5 of
Proposition 1.1.2). We take k ∈ N so that kp ∈ Z[x] and is primitive. Equality
q = (kp)(k−1a) implies, by 2, that k−1a ∈ Z[x]. As q is monic, the leading
coefficients of kp and k−1a are ±1, and we see that k = 1 and p ∈ Z[x].

4. The polynomial (qx − p)m = qmxm + · · · + (−p)m is primitive and, as
(qx− p)m = qm(x− p/q)m, divides a = lxn + · · ·+ a0 in Q[x], (qx− p)mb = a
for some b ∈ Q[x]. By part 2, b ∈ Z[x] and therefore qmk = l where k ∈ N is
the leading coefficient in b. In particular, qm ≤ l. 2

Proposition 1.1.5 The following reductions hold.

1. If Theorem 1.0.2 holds for every algebraic integer α ∈ R with degree at
least 3 and |α| ≤ 1

2 then it holds for every algebraic number α ∈ C.

2. Suppose that each algebraic number α ∈ C with degree d ≥ 3 satisfies a
strengthened Liouville’s inequality, which means that there exist functions
cα : N0 → R such that cα(q) → +∞ as q → ∞ and every fraction p

q ,
(p, q) = 1, satisfies |α − p/q| > cα(q)/qd. Then for every homogeneous,
nonzero and irreducible polynomial P ∈ Z[x, y] with deg(P ) ≥ 3 we have
|P (p, q)| → +∞ as max(|p|, |q|) → +∞ on p, q ∈ Z, because, with m =
max(|p|, |q|) for p, q ∈ Z,

|P (p, q)| �P min(md,min
α∈A

cα(m))

where A is the set of roots of the polynomials P (x, 1) and P (1, y). In
particular, this implies that every Thue equation has only finitely many
solutions.

3. Theorem 1.0.2 implies Theorem 1.0.1 and in fact more strongly that every
homogeneous, nonzero and irreducible polynomial P ∈ Z[x, y] with degree
d ≥ 3 satisfies for every p, q ∈ Z and ε > 0 the inequality

|P (p, q)| �P,ε max(|p|, |q|)d/2−1−ε.

7



Proof. 1. As we know, we may restrict to real algebraic numbers with degree
≥ 3. Let α ∈ R be algebraic with degree d. Using parts 1, 2 and 3 of Propo-
sition 1.1.2, we select numbers k ∈ N and l ∈ Z so that kα + l is an algebraic
integer with degree d and |kα+ l| ≤ 1

2 (so l = bkαc or l = dkαe). Now if p
q 6= α

then kp+lq
q 6= kα + l and |α − p

q | = 1
k |kα + l − kp+lq

q | > (c/k)q−1−ε−d/2 for a
constant c > 0 by the assumption.

2. Let P (x, y) be as stated. We factorize it as

P (x, y) = ayd
∏d
i=1(x/y − αi)

where a ∈ Z is nonzero and the αi are roots of P (x, 1). Since P (x, 1) is ir-
reducible in Z[x] and in Q[x] (part 2 of Proposition 1.1.4), the αi are distinct
algebraic numbers with degree d (part 6 of Proposition 1.1.2). Let

δ = 1
2 mini 6=i′ |αi − αi′ | > 0

and p, q ∈ Z be arbitrary with m = max(|p|, |q|). If q = 0, then |P (p, q)| =
|P (p, 0)| � |p|d = md because P (x, 0) has degree d (by irreducibility). Thus we
may assume that q 6= 0. We may also assume that |q| ≥ |p|; in the case |p| ≥ |q|
we use the symmetric factorization obtained by taking out axd and the roots
of P (1, y). If |αi − p/q| < δ for no i then |P (p, q)| = |aqd|

∏d
i=1 |αi − p/q| ≥

|aqd|δd � |q|d = md. If, say, |α1−p/q| < δ then triangle inequality implies that
|αi−p/q| > δ for i > 1 and we get, using the strengthened Liouville’s inequality
for α1, that |P (p, q)| > |aqd| · |α1 − p/q|δd−1 � cα1(|q|) = cα1(m). So we get
the lower bound on |P (p, q)|.

3. Immediate from part 2 and Theorem 1.0.2. 2

1.2 Proof of Thue’s theorem

We prove Theorem 1.0.2, which by part 3 of Proposition 1.1.5 proves Theo-
rem 1.0.1 as well. We assume that α ∈ R is an algebraic integer with degree
d ≥ 3 and |α| ≤ 1

2 ; part 1 of Proposition 1.1.5 says that Theorem 1.0.2 reduces
to this case. We proceed in four steps. First we construct a nonzero bivariate
polynomial F (x, y) = P (x) + yQ(x) with integral and not too large coefficients
that vanishes at (x, y) = (α, α) to a high order. We derive from this that for any
two fractions u, v approximating α the derivatives (DjF )(u, v) are close to zero.
They are, however, not too close to zero since we show that (DhF )(u, v) 6= 0
for not too large h. Finally, assuming existence of infinitely many very close
rational approximations to α, we select appropriately two of them, u and v, so
that the upper and lower bounds on |(DhF )(u, v)| from steps 2 and 3 become
contradictory.

Proposition 1.2.1 Let d,m, n ∈ N, d ≥ 3, and λ ∈ (0, 1
2 ) be such that m =

(2n + 2)(1 − λ)/d and α ∈ (− 1
2 ,

1
2 ) be an algebraic integer of degree d. Then

there exist nonzero integral polynomials P,Q ∈ Z[x] such that
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1. deg(P ),deg(Q) ≤ n;

2. ‖P‖, ‖Q‖ ≤ cn/λ1 where c1 > 1 depends only on α;

3. Dj(P (x) + αQ(x))(α) = 0 for every 0 ≤ j < m.

Moreover, P and Q are not proportional (P (x)/Q(x) is not constant).

Proof. In accordance with condition 1 we write P (x) =
∑n
i=0 aix

i, Q(x) =∑n
i=0 bix

i with ai, bi being 2n+2 unknown coefficients. The vanishing of deriva-
tives in condition 3 means that

∑n
i=0

(
i
j

)
(aiαi−j + biα

i−j+1) = 0 for 0 ≤ j < m

(recall that
(
i
j

)
= 0 for j > i). Replacing the powers of α by the expressions of

part 4 of Proposition 1.1.2 gives us m equalities∑d−1
k=0 α

k
∑n
i=j

(
i
j

)
(ci−j,kai + ci−j+1,kbi) = 0, 0 ≤ j < m.

Here cr,k ∈ Z with |cr,k| < cr0 and c0 > 1 depends only on α. These equalities
are satisfied if (and only if) all dm coefficients of αk, 0 ≤ k < d, are zero.
This gives dm homogeneous linear equations with 2n + 2 unknowns ai, bi and
integral coefficients

(
i
j

)
cr,k, j ≤ i ≤ n, 0 ≤ r ≤ n and 0 ≤ k < d, whose absolute

values are bounded by A = (2c0)n. Since 2n + 2 > dm, by Siegel’s lemma
there exist ai, bi ∈ Z, not all zero, satisfying these equations and bounded by
|ai|, |bi| ≤ (2n + 2)Amd/(2n+2−md) < (2n + 2)A1/λ ≤ (8c0)n/λ, which is the
bound required in condition 2, with c1 = 8c0.

These ai, bi give polynomials P,Q that are not both zero and satisfy condi-
tions 1–3. We show that they are in fact both nonzero and even non-proportional.
Suppose for contrary that Q 6= 0 but P = cQ for a constant c (possibly
zero); the case when P 6= 0 and Q = cP is similar. By 3, the polynomial
R(x) = (c + α)Q(x) has at x = α zero of order at least m. It is a nonzero
polynomial because Q 6= 0 and c+α 6= 0 as c ∈ Q. Thus Q(x) = (c+α)−1R(x)
has at x = α zero of order at least m. By part 7 of Proposition 1.1.2, deg(Q) ≥
md = (2n+ 2)(1− λ) > n+ 1, which contradicts deg(Q) ≤ n. 2

Proposition 1.2.2 Let d,m, n, λ, α and the corresponding polynomials P,Q
and constant c1 be as in Proposition 1.2.1 and u = p

q , v = r
s be two fractions

satisfying q, s ≥ 2, |α − u| < q−µ and |α − v| < s−µ where µ > 1. Then for
every 0 ≤ j < m,

|Dj(P (x) + vQ(x))(u)| ≤ cn/λ2 (q−µ(m−j) + s−µ)

with c2 > 1 depending only on α.

Proof. Let F (x, y) = P (x)+yQ(x). Since F (x, α) has at x = α zero of order at
least m, we have F (x, y) = F (x, α)+(y−α)Q(x) = (x−α)mR(x)+(y−α)Q(x)
where R ∈ C[x]. From this we get DjF (x, y) = (x−α)m−jS(x)+(y−α)DjQ(x)
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for some S ∈ C[x]. Using parts 1 and 2 of Proposition 1.1.1 and the fact that
|u|, |v| < 1 (since |α| < 1

2 ), we get

|Dj(P (x) + vQ(x))(u)| = |DjF (x, y)(u, v)|
= |(u− α)m−jS(u) + (v − α)DjQ(u)|
≤ q−µ(m−j)|S(u)|+ s−µ|DjQ(u)|
≤ q−µ(m−j)(n+ 1)‖S‖+ s−µ(n+ 1)‖DjQ‖.

Now ‖DjQ‖ ≤ (2c1)n/λ by part 6 of Proposition 1.1.1 and 2 of Proposition 1.2.1.
Equality DjF (x, α) = (x−α)m−jS(x) gives, by part 4 of Proposition 1.1.1, that
‖S‖ < (deg(S)+1)(2/|α|)n−j‖DjF (x, α)‖ ≤ (4/|α|)n(4c1)n/λ because deg(S) ≤
n < 2n, |α| < 1 and both ‖DjP‖, ‖DjQ‖ are bounded by (2c1)n/λ. Hence
‖S‖ ≤ (16c1/|α|)n/λ. In view of these bounds and 2(n+ 1) ≤ 4n we obtain the
stated estimate with c2 = 64c1/|α|. 2

Proposition 1.2.3 Let d,m, n, λ, α, P,Q, u = p
q and v = r

s be as before, in
Proposition 1.2.2. Then Dh(P (x) + vQ(x))(u) 6= 0 for some h ∈ N satisfying
h ≤ 1 + (c3/λ)n/ log q where c3 > 0 depends only on α.

Proof. The integral polynomial W = P ′Q−PQ′ is nonzero because by Propo-
sition 1.2.1 P,Q are non-proportional (so (P/Q)′ = W/Q2 is nonzero). Us-
ing the binomial formula (for derivatives of a product) we get that W (j) =∑j
i=0

(
j
i

)
(P (i+1)Q(j−i) − P (j−i)Q(i+1)) for every j ∈ N0. Let h ∈ N0 be the

minimum number with (P (x) + vQ(x))(h)(u) 6= 0, which exists because P (x) +
vQ(x) 6= 0. So P (j)(u) + vQ(j)(u) = 0 for 0 ≤ j < h. Elimination of v gives
equalities P (j)(u)Q(i)(u)−P (i)(u)Q(j)(u) = 0 for 0 ≤ i, j < h. Hence W (j)(u) =
0 for 0 ≤ j < h − 1 and W has at x = u = p

q zero of order at least h − 1. By
part 4 of Proposition 1.1.4, qh−1 ≤ ‖W‖. By the estimates in Proposition 1.1.1
and 2 of Proposition 1.2.1, ‖W‖ ≤ 2n‖PQ‖ ≤ 2n(n+ 1)c2n/λ1 ≤ (4c21)n/λ. Thus
the stated bound on h holds with c3 = log(4c21). 2

We prove by contradiction Theorem 1.0.2. We are given an algebraic integer
α ∈ (− 1

2 ,
1
2 ) of degree d ≥ 3 and an ε ∈ (0, 1

2 ), and we assume that∣∣∣∣α− p

q

∣∣∣∣ < 1
q1+ε+d/2

holds for infinitely many p
q ∈ Q. We derive a contradiction.

We fix an even t ∈ N so that λ = 2/(t + 2) < ε/2d, thus 0 < λ < 1
12 and

t ≥ 24, and let n run through the arithmetic progression n = i(t/2 + 1)d − 1,
i = 1, 2, . . . , thus m = (2n + 2)(1 − λ)/d = it. Let c be the maximum of the
constants c1/λ1 , c

1/λ
2 and c3/λ of Propositions 1.2.1–1.2.3; c depends only on α

and ε. We set

µ = 1 + ε+ d/2 and δ = (1 + 2ε/d)(1− λ)− 1.
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Note that 1
3 > δ > ε/2d > 0. From the infinitely many close rational approx-

imations to α we select two, u = p
q and v = r

s , so that (p, q) = (r, s) = 1,
2 ≤ q < s, |α− u| < q−µ, |α− v| < s−µ,

log q > 2cdµ/δ and log s/ log q > t+ 2(µ+ t)/δ.

We show that the bounds of Propositions 1.2.2 and 1.2.3 are for u and v con-
tradictory.

We take the unique m = it, i ∈ N, satisfying

log s
log q

− t ≤ m <
log s
log q

and the corresponding n = i(t/2+1)d−1. We take the polynomials P,Q ensured
by Proposition 1.2.1 that correspond to α, d,m, n, λ and take the minimum
h ∈ N0 such that

w = Dh(P (x) + vQ(x))(u) = (DhP )(u) + v(DhQ)(u) 6= 0.

By the lower bound on m and log s/ log q we have m > 6t > 100. Since 4n/d ≥
2(n + 1)/d > m > 100, we have that n > 25d. By Proposition 1.2.3, n > 2d
and the lower bound on log q we get that h < m because h ≤ 1 + cn/ log q <
1 + n/2d < n/d < 11

6 (n+ 1)/d < (2n+ 2)(1− λ)/d = m. We have inequalities

(qn−hs)−1 ≤ |w| < cn(q−µ(m−h) + s−µ) ≤ (2c)nq−µ(m−h).

The lower bound follows from the fact that 0 6= w ∈ Q and qn−hsw ∈ Z because
DhP,DhQ ∈ Z[x] and have degrees at most n−h. The upper bound follows from
Proposition 1.2.2 and the fact that s > qm (by the second inequality defining
m). Taking logarithms we get

µm− µh+ h− n ≤ log s
log q

+
n log(2c)

log q
≤ m+ t+

n log(2c)
log q

,

by the first inequality defining m. Using the bound on h from Proposition 1.2.3
we get

(µ− 1)m− n ≤ µh+ t+
n log(2c)

log q
≤ µ(1 + cn/ log q) + t+

n log(2c)
log q

.

Now (µ− 1)m− n > (ε+ d/2)2n(1− λ)/d− n = δn. (Here we see that the d/2
in µ = 1 + ε + d/2 is best possible in this argument.) By the lower bound on
log q we have

δn ≤ µ+ δn/4 + t+ δn/4 = µ+ t+ δn/2

and
n ≤ 2(µ+ t)/δ.

This is a contradiction because for large i ∈ N is n = i(t/2 + 1)d − 1 greater
than any bound depending only on α and ε.
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1.3 Remarks

The proof of Thue’s theorem in Section 1.2 follows the excellent exposition of
Zannier [46, chapter 2]. I was fascinated by it ever since I read 20+ years ago the
condensed (and then to me quite enigmatic) section in Sprindžuk [38, chapter
1.2]. We briefly mention three developments connected to Thue’s theorem.

Strengthenings of Thue’s inequality. In 1921 C. L. Siegel [36] improved the
exponent 1+ε+d/2 to ε+2

√
d (more precisely, to ε+mins=1,2,... s+d/(s+1)) and

then, independently, F. J. Dyson [10] and A. O. Gel’fond [16], [15] to ε+
√

2d. In
1955 K. Roth [32] achieved the ultimate improvement to ε+ 2. Roth’s theorem
states:

• For every algebraic number α ∈ C and every ε > 0 only finitely many
fractions p

q satisfy the inequality |α− p
q | < q−ε−2.

In 1958 was Roth awarded for his result Fields medal. The proof of Roth’s
theorem can be found, for example, in Bombieri and Gubler [7], Schmidt [33]
or Steuding [39].

Finiteness of solution sets of binary Diophantine equations. Siegel used
his strengthening of Thue’s inequality as a tool for his celebrated theorem on
integral points on algebraic curves. Siegel’s theorem [37] says:

• Write the equation F (x, y) = 0 with nonzero and irreducible polynomial
F ∈ C[x, y] as P (x, y) = Q(x, y) where P is nonzero homogeneous and
deg(P ) > deg(Q). If the equation has infinitely many integral solutions
x, y ∈ Z then P (z, 1) has at most two distinct roots and there are noncon-
stant rational functions a, b in C(t) such that F (a(t), b(t)) = 0 identically.

An algorithm can be based on Siegel’s theorem that for every binary Diophantine
equation determines whether it has infinitely many integral solutions ([6], [46]).
But it is open if an algorithm exists determining whether the solution set is
nonempty. For a general Diophantine equation in two or more unknowns the
last problem is undecidable and no such algorithm exists (by the Davis–Putnam–
Robinson–Matijasevič theorem of 1970, [8] and [26], solving the tenth problem
of Hilbert). For the proof of Siegel’s theorem see Bombieri and Gubler [7] or
Hindry and Silverman [21].

Effective solution of Thue equation. Both Thue’s inequality with its strength-
enings and Siegel’s theorem are non-effective, their proofs do not provide algo-
rithms for determining solution sets. Could some or all Thue equations be
effectively solved? In 1918 Thue himself obtained such results in a pioneering
but often misinterpreted article [42], [43, p. 565–571] where he described effec-
tive resolution of certain binomial equations axn − byn = m. For example, it
follows from his general theorem that if m,x, y ∈ Z are such that x7−17y7 = m
then max(|x|, |y|) ≤ 700|m|4. Similar result was obtained in 1964 by A. Baker
[2] who showed, for example, that if m,x, y ∈ Z are such that x3−2y3 = m then
max(|x|, |y|) ≤ (300000|m|)23. Shortly later, in 1966–68, in a breakthrough [3]
(awarded by Fields medal in 1970) he devised a method giving, among other
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applications, an effective bound on solutions to any Thue equation. Baker’s
effective version of Thue’s theorem [4, chapter 4] tells us:

• Let α1, . . . , αn, µ be algebraic integers of a number field K with degree d
such that all αi are distinct, n ≥ 3, µ 6= 0 and K = Q(α1, . . . , αn, µ, β)
for an algebraic number β. Then every solution to

(x− α1y)(x− α2y) . . . (x− αny) = µ

in algebraic integers x, y of K satisfies

max(h(x), h(y)) < exp((dH)(10d)
5
)

where h(·) is the size of algebraic numbers and H is the largest absolute
value of a coefficient in the defining polynomials of α1, . . . , αn, µ and β.

(Defining polynomial of an algebraic number α with degree d is the unique
nonzero polynomial p ∈ Z[x] with degree d such that p(α) = 0, p has coprime
coefficients and positive leading coefficient. For the definition of number fields
etc. see Section 3.1.)
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Chapter 2

Dirichlet’s theorem on
primes in arithmetic
progression

Nun läßt sich die Methode, durch die ich den Tschebyschefschen Satz, laut
dessen es zwischen ξ und 2ξ stets wenigstens eine Primzahl gibt, bewiesen habe,
auf den Fall der obenerwähnten arithmetischen Reihen übertragen.

P. Erdős [11]1

In 1837, Peter L. Dirichlet (1805–1859) [9] founded analytic number theory by
proving this fundamental result.

Theorem 2.0.1 (Dirichlet, 1837) For every two coprime numbers a,m ∈ N,
the arithmetic progression a, a+m, a+ 2m, a+ 3m, . . . contains infinitely many
prime numbers.

In [22] we presented its classical proof, which goes back to Dirichlet and uses
Dirichlet’s L-functions and the estimate∑

p

χ(p)
ps

= O(1), s→ 1+,

where χ is a non-principal Dirichlet character modulo m. Infinite sums, infinite
products and logarithmic function in complex domain are indispensable in it.

1“Then, the method, by which I have proved Chebyshev’s theorem saying that between
ξ and 2ξ there is at least one prime number, allows be carried over to the case of afore-
mentioned arithmetic progressions.” Erdős refers to his work P. Erdös, Beweis eines Satzes
von Tschebyschef, Acta Litt. ac Scient. Regiae Univ. Hungaricae Francisco Josephinae 5
(1930–1932), 194–198.
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Here we present two different proofs, one complete and the other partial. The
first proof in Section 2.2, due to H. N. Shapiro (1922), uses only finite sums, with
the exception of

∑∞
n=1

χ(n)
n , no L-functions and no complex function theory. It

is based on the estimate (Propositions 2.2.1 and 2.2.2)∑
n<x

χ(n)Λ(n)
n

= O(1), x→ +∞,

where χ is as before and Λ denotes the von Mangoldt function. In Section 2.1
we collect all results needed for the proof.

The second, partial, proof in Section 2.3 is due to P. Erdős (1913–1996)
and is even more elementary—no complex numbers now—but works for finitely
many moduli m only, those with

σ(m) =
∑

p<m, p |−m

1
p
< 1

and for every modulus dividing such m. For example, it works for moduli m = 5
and 6 as σ(5) = 5

6 < 1 and σ(6) = 1
5 < 1 and also for m = 7 because although

σ(7) = 31
30 > 1, we fortunately have σ(14) = 1504

2145 < 1. It works for every
m = 1, 2, . . . , 28 but not for m = 29 (because σ(29m) > 1 for every m ∈ N).
The complete list of m ∈ N with σ(m) < 1 follows:

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 28, 30, 36, 40, 42, 48,
50, 54, 60, 66, 70, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 150, 156,
168, 180, 210, 240, 270, 300, 330, 390, 420, 630, 840.

To get an idea of the proof recall Erdős’s proof of Chebyshev’s lower bound
on the prime counting function π(x). The number

(
2n
n

)
= (n+1)(n+2)...2n

1·2·...·n is
> 22n+o(n) and its prime factorization has only low powers: if pk divides

(
2n
n

)
then pk ≤ 2n. Thus (2n)π(2n) > 22n+o(n) and π(2n) > (log 2 +o(1))2n/ log(2n).
In the case of Dirichlet’s theorem Erdős constructs fractions Qn(a,m) > 0 with
similar properties: Qn(a,m) is exponentially big in n if σ < 1 and any prime
power pk, k ∈ Z, in its factorization with k ≥ 0 is small and moreover most of
these powers have k = 1 and p ≡ a modulo m. For σ < 1 and n → ∞, the
infinitude of primes p ≡ a modulo m follows. This is an ideal elementary proof
of Dirichlet’s theorem as it should be, with the blemish that it does not work
for almost all m. . .

2.1 Characters, Abel’s lemma and summation,
Möbius function and von Mangoldt function

A character of a finite Abelian group G = (G, ·) is a homomorphism

χ : G→ C×
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to the group (C×, ·) of nonzero complex numbers, χ(ab) = χ(a)χ(b) for every
pair of elements of G. It follows that χ(1G) = 1 and χ(a)n = 1 for every a ∈ G
where n = |G| is the order of G. The values of χ belong to the n-th roots of
unity and |χ(a)| = 1. The principal character, denoted χ0, has all values equal
to 1. The set of all characters of G, denoted G∗, is a group with respect to
pointwise multiplication: the product of ψ, χ ∈ G∗ is the character ψχ with
values

(ψχ)(a) = ψ(a)χ(a).

In this group 1G∗ = χ0 and inverses are obtained by complex conjugation,
χ−1(a) = χ(a)−1 = χ(a), since |χ(a)| = 1. Also, χ−1(a) = χ(a−1). Instead of
χ−1 we write χ. We will need only characters of the group

G(m) = ((Z/mZ)×, ·)

of residues modulo m ∈ N coprime to m but it is convenient to derive their
properties in general setting. Recall that G(m) has order

ϕ(m) = m(1− p−1
1 )(1− p−1

2 ) . . . (1− p−1
r )

where the pi are prime divisors of m. Euler’s function ϕ(m) counts the numbers
among 1, 2, . . . ,m that are coprime to m.

Proposition 2.1.1 Let G,H be finite Abelian groups and a, b ∈ G.

1. If G ⊂ H and H/G is a cyclic group of order n then every character of G
has exactly n extensions to a character of H. Consequently, |H∗| = n|G∗|.

2. For every G, |G∗| = |G|. For every a ∈ G, a 6= 1G, there is a character χ
of G such that χ(a) 6= 1.

3. The sum
∑
a∈G χ(a) equals |G| if χ = χ0 and is 0 if χ is non-principal.

4. The sum
∑
χ∈G∗ χ(a) equals |G∗| = |G| if a = 1G and is 0 if a 6= 1G.

5. The sum
∑
χ∈G∗ χ(a)χ(b) equals |G∗| = |G| if a = b and is 0 if a 6= b.

Proof. 1. Let aG be a generator of H/G. This means that an = b ∈ G
and every c ∈ H has a unique representation c = aig with 0 ≤ i < n and
g ∈ G. Let χ ∈ G∗. We show that the extensions of χ to characters of H 1-1
correspond to the n-th roots α of the number χ(b). If ψ ∈ H∗ extends χ then
ψ(c) = ψ(aig) = ψ(a)iχ(g) and, as ψ(a)n = ψ(an) = χ(b), ψ(a) = α for some
α. Thus we define n distinct mappings ψ = ψα : H → C× by ψ(c) = αiχ(g)
where c = aig. These are extensions of χ and we only have to check that they
are characters of H. If c1 = ai1g1 and c2 = ai2g2 are elements of H then
ψ(c1c2) = ψ(ai1+i2g1g2). If i1 + i2 < n then by the definition of ψ the last value
equals αi1+i2χ(g1g2) = αi1αi2χ(g1)χ(g2) = ψ(c1)ψ(c2). Else n ≤ i1 + i2 < 2n
and ai1+i2 = aib where i = i1 + i2 − n. Then again ψ(c1c2) = αiχ(bg1g2) =
αiχ(b)χ(g1)χ(g2) = αi+nχ(g1)χ(g2) = αi1αi2χ(g1)χ(g2) = ψ(c1)ψ(c2). To see
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that |H∗| = n|G∗|, note that every ψ ∈ H∗ is an extension of its restriction
ψ |G ∈ G∗.

2. It is simple to obtain a chain of subgroups {1G} = G0 ⊂ G1 ⊂ . . . ⊂ Gk =
G such that every factor Gi+1/Gi is a cyclic group with order ni+1; for every
proper subgroup Gi and every g ∈ G\Gi, Gi+1 = 〈Gi ∪ {g}〉 is a proper cyclic
extension of Gi. By part 1, |G∗| = nk|G∗k−1| = · · · = nknk−1 . . . n1 as |G∗0| = 1.
But also |G| =

∏k−1
i=0 |Gi+1/Gi| = nknk−1 . . . n1 and |G∗| = |G|.

For a given a ∈ G distinct from 1G we start the chain of cyclic extensions
with G1 = 〈a〉. By part 1, |G∗1| = |G1| = n1 ≥ 2 and every ψ ∈ G∗1 extends via
the chain to a χ ∈ G∗. Since G1 is a cyclic group generated by a, its characters
are determined by their values on a and there is a ψ ∈ G∗1 with ψ(a) 6= 1. Its
extension to a character of G gives the required χ.

3. The first claim is clear as χ0(a) = 1 for every a. If χ 6= χ0, we take b ∈ G
with χ(b) 6= 1. Since

∑
a∈G χ(a) =

∑
a∈G χ(ab) = χ(b)

∑
a∈G χ(a), the sum

equals 0.
4. The first claim is again clear as χ(1G) = 1 for every χ. If a 6= 1G, we

know by part 2 that ψ(a) 6= 1 for some ψ ∈ G∗. As in part 3,
∑
χ∈G∗ χ(a) =∑

χ∈G∗(ψχ)(a) = ψ(a)
∑
χ∈G∗ χ(a) implies that the sum equals 0.

5. This follows from part 4 because χ(a)χ(b) = χ(a−1b). 2

By a Dirichlet character modulo m ∈ N we mean a mapping

χ : Z→ C

such that (i) χ(a) 6= 0 iff a is coprime to m, (ii) χ(a + m) = χ(a) (periodicity
modulo m) and (iii) χ(ab) = χ(a)χ(b) (complete multiplicativity). Principal
Dirichlet character χ0 modulo m is the characteristic function of numbers co-
prime to m.

Proposition 2.1.2 Let χ be a Dirichlet character modulo m and a, b ∈ Z.

1. If (a,m) > 1 then χ(a) = 0 else |χ(a)| = 1.

2. If χ 6= χ0 then χ(a) + χ(a+ 1) + · · ·+ χ(a+m− 1) = 0 and

|χ(a) + χ(a+ 1) + · · ·+ χ(a+ b)| ≤ ϕ(m)− 1, b ≥ 0.

3. If a ∈ N and χ has only real values then
∑
d | a χ(d) ≥ 0 and is at least 1

if a is a square.

4. There are exactly ϕ(m) Dirichlet characters modulo m.

5. If (a,m) = 1 then the sum
∑
ψ ψ(a)ψ(b) over all Dirichlet characters

modulo m equals ϕ(m) if a ≡ b mod m and is 0 if a 6≡ b mod m.

Proof. There is an obvious 1-1 correspondence between G(m)∗ and Dirichlet
characters modulo m that preserves principality. If χ ∈ G(m)∗, we define χ′ :
Z → C by χ′(a) = 0 if (a,m) > 1 and χ′(a) = χ(a mod m) if (a,m) = 1.
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It is straightforward to check that χ′ has properties (i)–(iii). Conversely, for a
Dirichlet character χ′ modulo m we define χ : G(m) → C× by χ(g) = χ′(a)
where a ∈ Z is an arbitrary number of the congruence class g modulo m. By
(iii), χ ∈ G(m)∗.

1. Clear since χ(a) is for (a,m) = 1 the value of some character of G(m).
2. We have

∑a+m−1
i=a χ(i) =

∑
i∈Z χ(i) +

∑
i∈R χ(i) where Z is a complete

system of ϕ(m) residues modulo m coprime to m and R is the rest of the interval.
The first sum is 0 by part 3 of Proposition 2.1.1 and in the second each summand
is 0. To get a bound for arbitrary interval, we split it into disjoint intervals Ij
with length m and a residual interval R with length 0 ≤ |R| < m. We have just
shown that

∑
i∈Ij

χ(i) = 0 and therefore
∑a+b
i=a χ(i) =

∑
i∈R χ(i). If R contains

ϕ(m) numbers coprime to m, the last sum is 0 as well. Else it consists besides
zeros of at most ϕ(m) − 1 summands with modulus 1, which gives the stated
bound.

3. If a = pe11 p
e2
2 . . . per

r , complete multiplicativity of χ shows that the sum
equals

∏r
i=1(1 + χ(pi) + χ(pi)2 + · · · + χ(pi)ei). Since χ(pi) is 1,−1 or 0, the

factors are correspondingly ei + 1, 1
2 (1 + (−1)ei) or 1 and are all nonnegative.

If each ei is even, each factor is ≥ 1 and so is their product.
4. Immediate by the described correspondence and part 2 of Proposition 2.1.1.
5. For (b,m) = 1 it is a translation of part 5 of Proposition 2.1.1 and for

(b,m) > 1 it holds trivially. 2

We will bound moduli of finite or infinite sums
∑
i aibi for ai = χ(i) with

non-principal character and bi = f(i) with a nonnegative and nonincreasing
function by means of the next Abel’s lemma.

Lemma 2.1.3 Let a1, a2, . . . , an be complex numbers and b1 ≥ b2 ≥ · · · ≥ bn ≥
0 be real numbers. Then

|a1b1 + a2b2 + · · ·+ anbn| ≤ b1 max
i=1,...,n

|a1 + a2 + · · ·+ ai|.

Proof. We set Ai = a1 + a2 + · · ·+ ai, A0 = bn+1 = 0 and transform the sum
as
∑n
i=1 aibi =

∑n
i=1(Ai − Ai−1)bi =

∑n
i=1Ai(bi − bi+1). Thus |

∑n
i=1 aibi| ≤∑n

i=1 |Ai|(bi − bi+1) ≤ maxi |Ai| ·
∑n
i=1(bi − bi+1) = b1 maxi |Ai|. 2

More precise asymptotics required for the proof of L(1, χ) 6= 0 will be obtained
by Abel’s summation.

Lemma 2.1.4 Let a1, a2, . . . be complex numbers, A(t) =
∑
i≤t ai for t > 0

and f : [1, x] → R, x > 1, be a real function that has on the interval first
derivative. Then ∑

i≤x

aif(i) = A(x)f(x)−
∫ x

1

A(t)f ′(t) dt.
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Proof. Let n = bxc. We transform the sum to
∑n
i=1A(i)(f(i)−f(i+1)) where f

was extended to have derivative on [1, n+1] and value f(n+1) = 0. The last sum
equals −

∑n
i=1A(i)

∫ i+1

i
f ′ = −

∑n
i=1

∫ i+1

i
A(t)f ′(t) dt = −

∫ n+1

x
A(t)f ′(t) dt−∫ x

1
A(t)f ′(t) dt = A(x)f(x)−

∫ x
1
A(t)f ′(t) dt. 2

In the proof of L(1, χ) 6= 0 we will also use the following exchange of sum and
integral.

Lemma 2.1.5 Let f : N2 → C and g : [1, x] → R, x > 1, g Riemann-
integrable on [1, x], be two functions. Then∫ x

1

( ∑
i≤t, j≤x/t

f(i, j)
)
g(t) dt =

∑
ij≤x

f(i, j)
∫ x/j

i

g(t) dt.

Proof. For t ∈ [1, x] let R(t) = {(i, j) ∈ N2 | i ≤ t, j ≤ x/t}. We have
a unique splitting [1, x] = I1 ∪ I2 ∪ · · · ∪ Ir into closed intervals with disjoint
interiors and such that R(t) = Rk is constant for t ∈ Ik but Rk 6= Rk+1. The
integral on the left then equals

∑r
k=1

∑
(i,j)∈Rk

f(i, j)
∫
Ik
g(t) dt. Exchanging

summations we get
∑
ij≤x f(i, j)

∑
k, (i,j)∈Rk

∫
Ik
g(t) dt. The inner sum equals

to the inner integral in the displayed formula because the union of the intervals
Ik with (i, j) ∈ Rk is exactly the set {t ∈ [1, x] | (i, j) ∈ R(t)} which equals to
the interval [i, x/j]. 2

Recall that the Möbius function

µ : N→ {−1, 0, 1}

is defined by µ(1) = 1, µ(n) = (−1)r if n = p1p2 . . . pr is a square-free number
and µ(n) = 0 else. Part 2 of the next proposition is called Möbius inversion.

Proposition 2.1.6 The Möbius function µ has the following properties.

1. For n ∈ N the sum
∑
d |n µ(d) equals 1 if n = 1 and is 0 otherwise.

2. If f, g : N → C are two functions such that f(n) =
∑
d |n g(d) for every

n then g(n) =
∑
d |n µ(d)f(n/d) for every n.

Proof. 1. The case n = 1 is trivial and we assume that n > 1. The prime
factorization n = pa1

1 p
a2
2 . . . par

r then has r ≥ 1 and we see that
∑
d |n µ(d) =∑

d | p1...pr
µ(d) =

∑r
i=0

(
r
i

)
(−1)i = (1− 1)r = 0.

2. By the assumption,
∑
d |n µ(d)f(n/d) =

∑
d |n µ(d)

∑
e | (n/d) g(e). This

equals
∑
de |n µ(d)g(e) =

∑
e |n g(e)

∑
d | (n/e) µ(d) = g(n) by part 1. 2

The von Mangoldt function

Λ : N→ R

is defined by Λ(n) = log p if n = pk for a prime p and k ≥ 1 and Λ(n) = 0 else.
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Proposition 2.1.7 The von Mangoldt function Λ has the following properties.

1. For every n ∈ N,
∑
d |n Λ(d) = log n.

2. For every n ∈ N, Λ(n) = −
∑
d |n µ(d) log d.

3. For every n ∈ N and x > 0, the sum
∑
d |n µ(d) log(x/d) equals log x if

n = 1 and Λ(n) otherwise.

4. For x > 1,
∑
n<x Λ(n) = O(x).

5. For x > 1,
∑
n<x Λ(n)/n = log x+O(1).

Proof. 1. Considering the prime factorization n = pa1
1 p

a2
2 . . . par

r we see that∑
d |n Λ(d) =

∑
pk |n log p =

∑r
i=1 ai log pi = log n.

2. Möbius inversion of part 1 and part 1 of Proposition 2.1.6 give Λ(n) =∑
d |n µ(d) log(n/d) = (log n)

∑
d |n µ(d)−

∑
d |n µ(d) log d = −

∑
d |n µ(d) log d.

3. We write
∑
d |n µ(d) log(x/d) = (log x)

∑
d |n µ(d) −

∑
d |n µ(d) log d and

use part 1 of Proposition 2.1.6 and the previous result.
4. The sum equals

∑
pk<x log p. The contribution of prime powers with

k ≥ 2 is small, at most x1/2(log x/ log 2) log x = O(x1/2(log x)2), and it suffices
to show that

∑
p<x log p = O(x). Now

∏
n<p≤2n p ≤

(
2n
n

)
< 4n for every n ∈ N

because every prime in the range divides
(
2n
n

)
= 2n(2n − 1) . . . (n + 1)/n! and(

2n
n

)
< (1 + 1)2n by the binomial expansion. Hence

∑
n<p≤2n log p < (log 4)n.

Summing these inequalities with n = 1, 2, 4, 8, . . . , 2k where 2k < x ≤ 2k+1 we
get that

∑
p<x log p < (log 4)(1 + 2 + 4 + 8 + · · ·+ 2k) < 2(log 4)x.

5. We sum the identities of part 1 over n < x, interchange summations
and get

∑
d<x Λ(d)bx/dc =

∑
n<x log n. Integral estimate shows that the right

side is
∫ x
1

log(t) dt + O(log x) = x log x + O(x). By part 4, the left side equals
x
∑
d<x Λ(d)/d+O(x). Dividing by x we obtain the stated asymptotics. 2

2.2 Proof of Dirichlet’s theorem

For χ a Dirichlet character modulo m we consider the infinite series

L(1, χ) =
∞∑
n=1

χ(n)
n

.

If χ = χ0, it diverges to +∞ because it is minorized by the divergent series
1 + 1

m+1 + 1
2m+1 + . . . . For χ 6= χ0 it converges to a finite sum as Abel’s lemma

and part 2 of Proposition 2.1.2 show that |
∑l
n=k χ(n)/n| ≤ (ϕ(m)− 1)/k → 0

for k →∞. The main tool is the finite sum (x > 0)

S(x, χ) =
∑
n<x

χ(n)Λ(n)
n

.
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Proposition 2.2.1 Let χ be a Dirichlet character modulo m. For x→ +∞ the
following holds.

1. If χ = χ0 then S(x, χ0) = log x+O(1).

2. If χ 6= χ0 and L(1, χ) = 0 then S(x, χ) = − log x+O(1).

3. If χ 6= χ0 and L(1, χ) 6= 0 then S(x, χ) = O(1).

Proof. 1. Clearly, S(x, χ0) =
∑
n<x Λ(n)/n−

∑
p |m, pk<x(log p)/pk. The first

sum on the right is log x + O(1) by part 5 of Proposition 2.1.7 and the second
is at most

∑
p |m(log p)/(p− 1) = O(1). Thus S(x, χ0) = log x+O(1).

2. By part 3 of Proposition 2.1.7, log x +
∑
n<x χ(n)Λ(n)/n equals to

the sum
∑
n<x(χ(n)/n)

∑
d |n µ(d) log(x/d). Exchanging summations, writ-

ing n = de and using complete multiplicativity of χ we transform it in the
double sum D =

∑
d<x µ(d) log(x/d)(χ(d)/d)

∑
e<x/d χ(e)/e. The inner sum

equals, by the assumption, L(1, χ) −
∑
e≥x/d χ(e)/e = −

∑
e≥x/d χ(e)/e. By

Abel’s lemma and part 2 of Proposition 2.1.2, modulus of the last infinite sum
is smaller than ϕ(m)d/x. Hence |D| < (ϕ(m)/x)

∑
d<x log(x/d) = O(1) be-

cause
∑
d<x log(x/d) = x log x−

∑
d<x log d+O(log x) and the last sum equals

x log x+O(x) by the integral estimate. We conclude that
∑
n<x χ(n)Λ(n)/n =

− log x+D = − log x+O(1).
3. By part 1 of Proposition 2.1.7,

∑
n<x χ(n)(log n)/n equals to the sum∑

n<x(χ(n)/n)
∑
d |n Λ(d). Exchanging summations, writing n = de and us-

ing complete multiplicativity of χ we transform it in the double sum D =∑
d<x(χ(d)Λ(d)/d)

∑
e<x/d χ(e)/e. As in the previous part, by Abel’s lemma

the inner sum is L(1, χ) + cd/x where |c| < ϕ(m). Hence we get that |D −
L(1, χ)

∑
d<x χ(d)Λ(d)/d| < (ϕ(m)/x)

∑
d<x Λ(d) = O(1), by part 4 of Propo-

sition 2.1.7. Thus
∑
n<x χ(n)(log n)/n = L(1, χ)

∑
d<x χ(d)Λ(d)/d + O(1). By

Abel’s lemma and part 2 of Proposition 2.1.2, modulus of the sum on the left
is O(1). Dividing by L(1, χ) we conclude that

∑
d<x χ(d)Λ(d)/d = O(1). 2

Next we prove that the second possibility does not occur.

Proposition 2.2.2 L(1, χ) 6= 0 for every non-principal Dirichlet character χ
modulo m.

Proof. Let V be the number of non-principal Dirichlet characters χ modulo m
for which L(1, χ) = 0. By part 5 of Proposition 2.1.2 and Proposition 2.2.1 we
have 0 ≤ ϕ(m)

∑
n≡1 (m), n<x Λ(n)/n =

∑
χ

∑
n<x χ(n)Λ(n)/n = (1−V ) log x+

O(1). So V ≥ 2 gives a contradiction for large x and there is at most one non-
principal χ with L(1, χ) = 0. This χ has only real values because else χ would be
a different character and L(1, χ) = 0, L(1, χ) = L(1, χ) = 0 would give V ≥ 2.
We assume that χ is a non-principal real character and show that L(1, χ) 6= 0.

We denote S(t) =
∑
i≤t χ(i). By Lemma 2.1.4,

∑
i≤x χ(i)/i = S(x)x−1 +∫ x

1
S(t)t−2 dt. The left side differs from L(1, χ) by O(x−1) (by Abel’s lemma)

and S(x) = O(1) (part 2 of Proposition 2.1.2). Hence multiplying the last
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equality by x we get xL(1, χ) = O(1) +
∫ x
1

(
∑
i≤t χ(i))x dt/t2. This integral

equals, up to the error O(log x),
∫ x
1

(
∑
i≤t χ(i))bx/tc dt/t, which we write as∫ x

1
(
∑
i≤t, j≤x/t χ(i)) dt/t. By Lemma 2.1.5, it equals to

∑
ij≤x χ(i)

∫ x/j
i

dt/t =∑
ij≤x χ(i) log(x/ij). Writing n = ij and exchanging summations we get the

sum
∑
n≤x log(x/n)

∑
i |n χ(i). By part 3 of Proposition 2.1.2, the inner sum is

always nonnegative and at least 1 for squares. Thus we get the inequality

xL(1, χ) > O(log x) +
∑
k2≤x

log(x/k2) > O(log x) + (log 4)b
√
x/2c

(considering k with k ≤
√
x/2). If L(1, χ) = 0 this produces contradiction for

large x. Hence L(1, χ) 6= 0, in fact L(1, χ) > 0. 2

Now we prove Dirichlet’s theorem. Let a ∈ N be coprime with m ∈ N and
let

S(x, a) =
∑

n<x, n≡a (m)

Λ(n)
n

.

On the one hand, S(x, a) equals
∑
p<x, p≡a (m)(log p)/p plus the contribution

from the prime powers pk < x, pk ≡ a (m), with k ≥ 2. But this is at most∑∞
k=2

∑∞
n=2(log n)/nk = O(1). On the other hand, after exchanging summa-

tions and using part 5 of Proposition 2.1.2, ϕ(m)S(x, a) =
∑
χ χ(a)S(x, χ),

summed over all ϕ(m) Dirichlet characters modulo m. By Propositions 2.2.1
and 2.2.2, the last sum is log x + O(1) because all summands with χ 6= χ0 are
O(1) and the remaining summand with χ = χ0 is log x + O(1). We conclude
that, for x > 0, ∑

p<x, p≡a (m)

log p
p

=
log x
ϕ(m)

+O(1).

This goes to infinity with x and thus there are infinitely many primes congruent
to a modulo m.

2.3 Erdős’s partial proof of Dirichlet’s theorem

Let a,m ∈ N, 1 ≤ a < m and (a,m) = 1, p1, p2, . . . , ph be the list of all primes
that are smaller than m and do not divide it and qi ∈ N, 1 ≤ qi < m, be given
by piqi ≡ a modulo m. For n ∈ N we consider the numbers

Pn(a,m) =
(a+m)(a+ 2m) . . . (a+ nm)

n!

Qn(a,m) =
Pn(a,m)

Pn/p1(q1,m)Pn/p2(q2,m) . . . Pn/ph
(qh,m)

.

In Qn(a,m) we assume for simplicity that n is divisible by p1p2 . . . ph. Both
Pn(a,m) and Qn(a,m) are in general fractions. For a prime p and a

b ∈ Q
we define ordp(a/b) ∈ Z, the order of p in a

b , as i − j where pi (resp. pj) is
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the highest power of p dividing a (resp. b). We have the prime factorization
a
b =

∏
p p

ordp(a/b). If ordp(a/b) ≥ k, we say that pk divides a
b .

Proposition 2.3.1 Let σ = σ(m) =
∑h
i=1 1/pi. The numbers Pn(a,m) and

Qn(a,m) have the following properties.

1. Qn(a,m) = m(1−σ)n+o(n) as n→∞ (on n ≡ 0 (mod p1p2 . . . ph)).

2. Let (p,m) = 1 and k = ordp(Pn(a,m)). Then 1 ≤ pk < (n+ 1)m.

3. If p divides m and σ ≤ 1 then ordp(Qn(a,m)) ≤ 0.

4. Suppose that n ≥ m and p >
√

(n+ 1)m, p divides Pn(a,m) and p 6≡ a
modulo m. Then p divides Pn/pi

(qi,m) for some i, 1 ≤ i ≤ h.

For m with σ(m) < 1 we derive from this Dirichlet’s theorem. We apply Propo-
sition 2.3.1 to the prime factorization of Qn(a,m) for n ≥ m and divisible by
p1p2 . . . ph. For a prime p let k = ordp(Qn(a,m)). By parts 2 and 4, k = 0 for
p ≥ (n + 1)m, k ≤ 1 for p >

√
(n+ 1)m and k ≤ 0 if p >

√
(n+ 1)m and is

not a modulo m. For p ≤
√

(n+ 1)m we always have (by parts 2 and 3) that
pk < (n+ 1)m. Hence, by part 1,

m(1−σ)n+o(n) = Qn(a,m) ≤
∏

p≤
√

(n+1)m

(n+ 1)m
∏

p<(n+1)m
p≡a (m)

p.

The first product is at most ((n+ 1)m)
√

(n+1)m = mo(n), n→∞. Therefore∏
p<(n+1)m

p≡a (m)

p > m(1−σ)n+o(n), n→∞.

If σ < 1, the right side goes to +∞ and so does the product, which means that
the congruence class a modulo m contains infinitely many primes.

It remains to prove Proposition 2.3.1. Key is property 4 sifting out primes
not congruent amodm. We begin with a simple but crucial lemma on arithmetic
progressions.

Lemma 2.3.2 Let a ∈ Z, d,m, n ∈ N, A = {a + m, a + 2m, . . . , a + nm} ⊂ Z
and A(d) be the number of multiples of d in A.

1. If (d,m) = 1 then A(d) = bn/dc or bn/dc+ 1.

2. If (d,m) = 1 then A(d) = bn/dc + 1 if and only if there is a multiple
a+ jm of d in A such that 1 ≤ j ≤ n− dbn/dc.

3. If a = 0 and m = 1 then A(d) = bn/dc for every n and d.

4. If k is the order of p in
∏
x∈A x then k =

∑
i≥1A(pi). In fact, this holds

for any subset A ⊂ Z.
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Proof. 1. If j, k ∈ Z are noncongruent modulo d then so are a + jm, a + km
because (d,m) = 1. Thus if I ⊂ Z is an interval with |I| ≤ d then the numbers
a+ jm, j ∈ I, are pairwise noncongruent modulo d. Thus if |I| = d then a+ jm
is a multiple of d for exactly one j ∈ I and if |I| < d then there is at most
one such j. Partitioning {1, 2, . . . , n} into bn/dc intervals with length d and one
shorter residual interval we get the bound for A(d).

2. This follows by the argument in part 1 if the residual interval is selected
as {1, 2, . . . , n− dbn/dc}.

3. This follows by parts 1 and 2 as no a + jm = j ∈ {1, 2, . . . , n − dbn/dc}
is a multiple of d.

4. The identity follows by double counting the pairs (i, x) ∈ N×A where pi

divides x. 2

Proof of Proposition 2.3.1. 1. From jm < a + jm < (j + 1)m we get
that mn < Pn(a,m) < (n+ 1)mn and Pn(a,m) = mn+o(n). Hence Qn(a,m) =
mn−n/p1−···−n/ph+o(n) = m(1−σ)n+o(n).

2. We show that k ≥ 0 and pk ≤ a + nm. Denoting A = {a + m, a +
2m, . . . , a+ nm}, B = {1, 2, . . . , n} and using parts 1, 3 and 4 of Lemma 2.3.2
we get that k =

∑
i≥1(A(pi) − B(pi)) is nonnegative and at most j, where

pj ≤ a + nm < pj+1, because A(pi) = B(pi) = 0 if i > j. Thus k ≥ 0 and
pk ≤ pj ≤ a+ nm < (n+ 1)m.

3. If p divides m then it does not divide the numerator of any Pn(a,m) and
we see that ordp(Qn(a,m)) equals minus the order of p in n!/(n/p1)! . . . (n/ph)!.
This fraction is an integer because (n/p1) + · · · + (n/ph) ≤ n. Therefore
ordp(Qn(a,m)) ≤ 0.

4. As p > m, p is coprime with m. Clearly, p2 does not divide any of
the numbers j, a + jm for 1 ≤ j ≤ n. Therefore, in the notation of part 2,
1 = k = A(p) − B(p) = A(p) − bn/pc. By part 2 of Lemma 2.3.2, if we denote
l = n− pbn/pc, there exists j, 1 ≤ j ≤ l, for which a+ jm is a multiple of p (in
particular, l > 0 and p does not divide n). So

a+ jm = pb, b ∈ N and 1 ≤ j ≤ l.

We may assume that the j ≥ 1 here is the least one. This implies, since
1 ≤ a < m, p > m and pb is a modulo m, that 1 ≤ b < m and (b,m) = 1.
But b 6= 1 because p is not a modulo m. Thus 1 < b < m and b is divisible by
some pi (a prime smaller than m and not dividing m), b = pic for c ∈ N. Now
a = piqi + tm for some t ∈ Z. Since pi, qi > 0 and a < m, we see that t ≤ 0.
Plugging in for b and a we get the equality

piqi + (t+ j)m = ppic.

As (pi,m) = 1, we see that pi divides t+ j and t+ j = pij
′ for j′ ∈ Z. Therefore

qi + j′m = pc.

As for the size of j′, we have j′ ≥ 1 because pc > m but 1 ≤ qi < m. We define
l′ by l′ = (n/pi) − pbn/pi

p c (recall that pi divides n) and it remains to show
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that j′ ≤ l′. This by Lemma 2.3.2, especially part 2, gives that p divides also
Pn/pi

(qi,m). Suppose for contrary that 0 ≤ l′ < j′. Then l′ < j′ = (t+ j)/pi ≤
j/pi and 0 ≤ pil

′ < j ≤ l ≤ p− 1. After multiplying the equality defining l′ by
pi we get that pil′ = l (by the unicity of residue upon dividing n by p), which
is a contradiction. Therefore 1 ≤ j′ ≤ l′ and Pn/pi

(qi,m) is divisible by p. 2

2.4 Remarks

The proof in Sections 2.1 and 2.2 is based on the nice exposition of Pollack [29,
chapter 4], which in turn follows the presentation of Gel’fond and Linnik [18]
([17, section 3.2]) of Shapiro’s proof [35]. Harrison [19] used it to give formalized
computer-verified proof of Dirichlet’s theorem. The proof of non-vanishing of
L(1, χ) (Proposition 2.2.2) is due to Yanagisawa [44] (the book of Gel’fond and
Linnik contains another proof, which we reproduced in [22]). In Section 2.3 we
follow and streamline Erdős [11], who was more interested in proving analogues
of Bertrand’s postulate for arithmetic progressions. For his classical proof of
Bertrand’s postulate see the book of Aigner and Ziegler [1]. Improvements and
extensions of his bounds were achieved by Moree [27], who determined the list of
m ∈ N with σ(m) < 1. For other elementary approaches to Dirichlet’s theorem
and further information see Narkiewicz [28]. Results similar to those of Erdős
were obtained earlier by Ricci in [30] and [31], and Erdős acknowledges this in
his article. (Had Ricci found an erdősian proof of particular cases of Dirichlet’s
theorem before Erdős? By the reviews in Zentralblatt, Ricci’s arguments invoke
the Prime Number Theorem, which seems to render them non-elementary.)
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Chapter 3

The Gel’fond–Schneider
theorem on transcendence
of αβ

Hermite’s arithmetical theorems on the exponential function and their exten-
sion by Lindemann are certain of the admiration of all generations of mathe-
maticians. Thus the task at once presents itself to penetrate further along the
path here entered ( . . . ) We can also give this statement a geometrical form, as
follows:

If, in an isosceles triangle, the ratio of the base angle to the angle at the
vertex be algebraic but not rational, the ratio between base and side is always
transcendental.

In spite of the simplicity of this statement and of its similarity to the problems
solved by Hermite and Lindemann, I consider the proof of this theorem very
difficult; as also the proof that

The expression αβ , for an algebraic base α and an irrational algebraic expo-
nent β, e. g., the number 2

√
2 or eπ = i−2i, always represents a transcendental

or at least an irrational number.

It is certain that the solution of these and similar problems must lead us to
entirely new methods and to a new insight into the nature of special irrational
and transcendental numbers.

D. Hilbert [20]

This fragment of the address given by D. Hilbert (1862–1943) at the Interna-
tional Congress of Mathematicians in Paris in 1900, which in the printed version
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lists 23 famous problems, concerns the seventh problem on transcendental num-
bers. Hilbert regarded it as difficult and later in 1920s in a popular lecture stated
that he may live to see solution of Riemann’s hypothesis (the 8th problem), the
youngest people in the auditory may live to see resolution of Fermat’s Last The-
orem, but the solution of his seventh problem lies farther in the future. As for
the FLT he was perhaps right (A. Wiles proved it with the help of R. Taylor in
1994–95) but not so in the case of the other two problems. In 2010 RH remains
open (despite that in the ArXiv one sees its “(dis)proof” every other month or
so) but the seventh problem was solved in Hilbert’s lifetime. First breakthrough
was obtained by Gel’fond in 1929 [13] by proving the transcendence of eπ = i−2i

(and other similar numbers). In 1930 R. O. Kuzmin extended his result to αβ

with real quadratic β. Finally, in 1934 Hilbert’s seventh problem was solved
completely and independently by Alexander O. Gel’fond (1906–1968) [14] and
Theodor Schneider (1911–1988) [34].

Theorem 3.0.1 (Gel’fond, 1934; Schneider, 1934) If α, β ∈ C are alge-
braic numbers, α 6= 0, 1 and β 6∈ Q, then the number αβ is transcendental.

Here αβ denotes any of the generally infinitely many values of exp(β logα) with
exp(z) =

∑
n≥0 z

n/n! and logα = log |α|+ i(arg(α) + 2kπ) for arg(α) ∈ [−π, π)
and k running through Z—each of these values is transcendental. For example,

2
√

2 = 2.66514 . . . and each of (cos(2kπ
√

2) + i sin(2kπ
√

2)2
√

2, k ∈ Z,

is transcendental. And so is

eπ = 23.14069 . . .

and each of its complex relatives, since exp(πi) = −1 ∈ (eπ)i and both i and
−1 are algebraic.

The theorem will be proved in Section 3.2. The proof requires some stan-
dard results from the algebraic number theory on algebraic numbers, which are
somewhat more involved than what we used in Chapter 1. Since we keep our
lecture notes self-contained, we rederive these results from scratch in a conve-
nient form in Section 3.1. We only assume familiarity of the reader with linear
algebra and language of commutative algebra.

3.1 Algebraic numbers and number fields

We consider only fields that are subfields of the field C of complex numbers. If
K ⊂ L ⊂ C are two such fields, we write [L : K] for the degree of L over K, the
dimension of L as a vector space over K. Every field K has Q as a subfield and
if d = [K : Q] < ∞, we call K a number field and d its degree. If K is a field
and X ⊂ C, then K[X] = {p(α1, . . . , αr) | p ∈ K[x1, . . . , xr], αi ∈ X}, resp.
K(X) = {p(α1, . . . , αr)/q(α1, . . . , αr) | p, q ∈ K[x1, . . . , xr], αi ∈ X}, is the
smallest subring, resp. subfield, of C containing K∪X. Clearly, K[X] ⊂ K(X).

27



For finite X = {α1, . . . , αr} we write K[α1, . . . , αr] and K(α1, . . . , αr) instead
of K[{α1, . . . , αr}] and K({α1, . . . , αr}). For K a field and α ∈ C we say that α
is algebraic over K if p(α) = 0 for a nonzero p ∈ K[x]; the minimum polynomial
of α over K and the degree of α over K are defined in the manner analogous
to the case K = Q. As in the case K = Q, the minimum polynomial of α over
K is irreducible in K[x], has only simple roots and divides every q ∈ K[x] with
root α (cf. Proposition 1.1.2).

Proposition 3.1.1 Fields and number fields have the following properties.

1. If K ⊂ L ⊂M are fields then [M : K] is finite iff both [M : L] and [L : K]
are finite, and in this case [M : K] = [M : L] · [L : K].

2. If K ⊂ L are fields with [L : K] < ∞ then every α ∈ L is algebraic over
K. In particular, every element of a number field is an algebraic number.

3. If X ⊂ C is a finite set of numbers algebraic over a field K then K(X) =
K[X] and [K(X) : K] <∞. In particular, Q(X) = Q[X] and is a number
field if X is a finite set of algebraic numbers.

4. If α ∈ C is algebraic over a field K then K(α) = K[α] and [K(α) : K]
equals to the degree of α over K.

Proof. 1. Suppose that [M : L] = m, [L : K] = l are finite and {v1, . . . , vm} ⊂
M , resp. {u1, . . . , ul} ⊂ L, is a linear basis of M over L, resp. of L over K. It
is not hard to check that {vjui | 1 ≤ j ≤ m, 1 ≤ i ≤ l} ⊂ M is then a linear
basis of M over K. Thus [M : K] = ml is finite. Conversely, if [M : K] = k
is finite, then L as a vector subspace of M has [L : K] = l with l ≤ k. Each
k+ 1 elements of M are linearly dependent over K, thus over L and we see that
[M : L] = m ≤ k. By the previous direction we have that k = lm.

2. Let α ∈ L and [L : K] = d. The d + 1 elements 1, α, α2, . . . , αd of L are
linearly dependent over K, which means that p(α) = 0 for a nonzero polynomial
p ∈ K[x] with degree at most d.

3. Suppose that X = {α1, . . . , αr} where αi has degree di over K. Let
d = d1d2 . . . dr. Then K[X] as a vector space over K has dimension at most d
and is a K-linear span of the d elements αi11 . . . αirr , 0 ≤ ij < dj , because each
power αei , e ∈ N0, expresses as a K-linear combination of the first di powers
1, αi, . . . , αdi−1

i (clear for 0 ≤ e ≤ di and for e > di we use in αei = αiα
e−1
i

induction). Thus also [K(X) : K] ≤ d because every d+1 elements a1, . . . , ad+1

of K(X) are linearly dependent over K; there is a nonzero a ∈ K[X] such that
aai ∈ K[X] for every 1 ≤ i ≤ d + 1 and since aai are linearly dependent over
K, so are ai. This argument shows that in fact the dimension of K[X] over K
equals [K(X) : K] and in K[X] ⊂ K(X) we have equality.

4. By 3, K(α) = K[α]. Let α have degree d over K. As we know, every
power αe, e ∈ N0, is a K-linear combination of 1, α, . . . , αd−1 and these are
linearly independent over K (else α would have a smaller degree over K). Thus
{1, α, . . . , αd−1} is a linear basis of K[α] over K and [K(α) : K] = d. 2
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If K ⊂ L are fields with finite [L : K] = l, then in an obvious way we can reach
L from K by a chain of one-element algebraic extensions K = K0 ⊂ K1 ⊂ . . . ⊂
Kr = K where Ki = Ki−1(αi), 0 < i ≤ r, for an αi with degree di > 1 over
Ki−1. By 1 and 4 of the proposition, l = d1d2 . . . dr. Let us call this a simple
chain. It can be proven that a simple chain exists with r = 1, in particular
every number field is of the form Q(α) for an algebraic α ∈ C, but we will not
need this.

For an algebraic number α ∈ C with degree d, the set of conjugates of α is
the set con(α) of all roots of the minimum polynomial of α. So α ∈ con(α) and
|con(α)| = d. An embedding of a field K (in C) is any (necessarily injective)
field homomorphism σ : K → C. We denote the set of all embeddings of K by
G(K). So idK ∈ G(K) and σ|Q = idQ for every σ ∈ G(K) and every field K.
If p ∈ K[x1, . . . , xr], σ(p) denotes the polynomial obtained from p by applying
σ to the coefficients.

Proposition 3.1.2 Embeddings of fields and conjugates of algebraic numbers
relate as follows.

1. If K ⊂ L are fields with [L : K] = l <∞ then every σ ∈ G(K) has exactly
l extensions to an embedding of L.

2. Every number field L with degree d has exactly d embeddings.

3. Let α ∈ C be algebraic of degree d and let α ∈ L for a degree e number
field L. Then d divides e,

{σ(α) | σ ∈ G(L)} = con(α)

and for every β ∈ con(α) there are exactly e/d embedding σ of L with
σ(α) = β.

Proof. 1. It suffices to prove this when L = K(α) = K[α] where α has degree l
over K; the general case follows by reaching L from K by a simple chain. Let p ∈
K[x] be the minimum polynomial of α over K and σ ∈ G(K). Each extension
τ ∈ G(L) of σ sends α to a root of σ(p) because 0 = τ(p(α)) = τ(p)(τ(α)) =
σ(p)(τ(α)). The value β = τ(α) uniquely determines τ because every a ∈ L has
form a = q(α) for some q ∈ K[x] and so τ(a) = σ(q)(β). Fixing a root β of
σ(p) and defining τ = τβ : L → C by q(α) 7→ σ(q)(β), q ∈ K[x], we only need
to show that the value τ(a) does not depend on q; if the definition is correct
then clearly τ ∈ G(L) and extends σ. Let a = q(α) = r(α) for q, r ∈ K[x].
Then (q − r)(α) = 0, p divides q − r and σ(p) divides σ(q − r) = σ(q) − σ(r),
which implies that σ(q)(β) = σ(r)(β). Thus both representations of a give the
same value of τ . We conclude that the extensions τ ∈ G(L) of σ bijectively
correspond to the roots of σ(p). The polynomial p ∈ K[x] is monic, has degree
l and only simple roots. It follows that σ(p) has the same properties and thus
there are exactly l extensions τ .

2. A particular case of 1 with K = Q, as Q has just the identical embedding
in C.
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3. We set K = Q(α). Considering the extensions Q ⊂ K ⊂ L, 1 and
4 of Proposition 3.1.1 give that d = [K : Q] and divides e = [L : Q] with
e/d = [L : K]. Every σ ∈ G(L) sends α to a root β of the minimum polynomial
p ∈ Q[x] of α, as 0 = σ(p(α)) = σ(p)(σ(α)) = p(σ(α)), and σ|K ∈ G(K).
We know from 1 and 2 that α 7→ β extends to a unique ρ ∈ G(K) which is
thus a restriction to K of every σ ∈ G(L) satisfying σ(α) = β. The number of
σ ∈ G(L) with σ(α) = β therefore equals to the number of extensions of this ρ
to an embedding of L. By part 1, this number is [L : K] = e/d. 2

The size h(α) of an algebraic number α ∈ C is

h(α) = max
β∈con(α)

|β|.

The size h(P ) of a polynomial P with algebraic coefficients is the maximum size
of its coefficient.

Proposition 3.1.3 Let c ∈ Q and α, β ∈ C be algebraic numbers.

1. If α ∈ K for a number field K then h(α) = maxσ∈G(K) |σ(α)|.

2. If α is a nonzero algebraic integer then h(α) ≥ 1.

3. It holds that h(c) = |c|, h(cα) = |c|h(α), h(α + β) ≤ h(α) + h(β) and
h(αβ) ≤ h(α)h(β).

Proof. 1. This follows from part 3 of Proposition 3.1.2.
2. The product of conjugates of α is the constant coefficient of the minimum

polynomial of α, which is a nonzero integer. Thus in absolute value one of the
conjugates must be at least 1.

3. That h(c) = |c| is clear from the definition. We put c, α, β ∈ K = Q(α, β).
Then K is a number field and σ(α + β) = σ(α) + σ(β) and σ(αβ) = σ(α)σ(β)
for every σ ∈ G(K). The equality h(cα) = |c|h(α) and the two inequalities now
follow by part 1. 2

The setKI ofK-integral elements of a fieldK consists of all algebraic integers
in K. It is easy to see that QI = Z and Z ⊂ KI for every K. Recall that
each algebraic α ∈ K has a denominator, a number k ∈ N such that kα ∈
KI . It follows that any finite set X ⊂ K of algebraic numbers has a common
denominator, a k ∈ N such that kα ∈ KI for every α ∈ X.

Proposition 3.1.4 K-integral elements of a field K have the following proper-
ties.

1. KI is a subring of K.

2. For n ∈ N let f(n) = fK(n) be the number of α ∈ KI with h(α) < n. If
K is a number field with degree d then

f(n) < (2n)d
2
.
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3. If α ∈ KI and K is a number field then
∏
σ∈G(K) σ(α) ∈ Z and this

product is nonzero iff α is nonzero.

Proof. 1. We need to show that the set of algebraic integers is closed to
sums and products. Let α, β be nonzero algebraic integers with degrees d, e and
γ = α + β. We show that p(γ) = 0 for a monic p ∈ Z[x]; the proof for αβ
is similar. Let c = de and {α1, α2, . . . , αc} = {αiβj | 0 ≤ i < d, 0 ≤ j < e}.
As we know, every monomial αiβj , i, j ∈ N0, is a Z-linear combination of the
elements α1, . . . , αc. Hence γαi =

∑c
j=1mi,jαj for some mi,j ∈ Z for every

1 ≤ i ≤ c. We consider the c × c matrix M = (γδi,j − mi,j). Its rows give
a system of c homogeneous linear equations with c unknowns xj , which has a
nontrivial solution xj = αj . Thus det(M) = 0. Clearly, the determinant is a
monic integral polynomial in γ with degree c, which is what we wanted.

2. We associate with each α ∈ KI the degree d polynomial

qα(x) =
∏
σ∈G(K)(x− σ(α)) = xd +

∑d
i=1 aix

d−i.

By part 3 of Proposition 3.1.2, qα(x) = p(x)d/e where p ∈ Z[x] is the minimum
polynomial of α and e is the degree of α. Thus ai ∈ Z for 1 ≤ i ≤ d. By part 1 of
Proposition 3.1.3, for h(α) < n we have that |ai| = |

∑
σ1,...,σi

σ1(α) . . . σi(α)| <(
d
i

)
ni (we sum over all i-element subsets of G(K)). The number of monic degree

d polynomials with integral coefficients that satisfy these bounds is smaller than∏d
i=1 2

(
d
i

)
ni. The mapping α 7→ qα(x) is at most d to 1 (α is a root of qα) and

therefore
f(n) < d2d

∏d
i=1

(
d
i

)
ni ≤ (2n)d

2

—induction shows that 1 + 2 + · · ·+ d =
(
d+1
2

)
≤ d2 and d2d

∏d
i=1

(
d
i

)
≤ 2d

2
for

every d ∈ N.
3. This product is up to sign the constant coefficient ad ∈ Z of the polynomial

qα(x) in part 2. The last claim follows from the fact that σ(α) = 0 iff α = 0
for every σ ∈ G(K) as σ is injective (and of course from the fact that C has no
zero divisors). 2

A well-known result, which we will not need, is the existence of integral basis
for KI , which is a linear basis {α1, . . . , αd} ⊂ KI for K over Q, d = [K : Q],
such that KI = {

∑d
i=1 aiαi | ai ∈ Z}.

The next three propositions are auxiliary results for the proof of the Gel’fond–
Schneider theorem in the next section. The following version of Siegel’s lemma
for number fields will suffice for the proof.

Proposition 3.1.5 Let K be a number field with degree d. Any system of m
homogeneous linear equations with n unknowns

n∑
j=1

ai,jxj = 0, 1 ≤ i ≤ m,
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in which n ≥ 2d2m and ai,j ∈ KI are K-integral coefficients satisfying h(ai,j) <
A, A ≥ 1, for every i, j, has an integral solution (α1, . . . , αn) ∈ Zn with some
αj nonzero and satisfying |αj | < 3nA for every j.

Proof. Let fi(x1, . . . , xn) =
∑n
j=1 ai,jxj , 1 ≤ i ≤ m. For k ∈ N there are

exactly kn n-tuples in the box B = {0, 1, . . . , k − 1}n and for every x ∈ B and
i we have fi(x) ∈ KI and h(fi(x)) < knA (by 3 of Proposition 3.1.3). By
2 of Proposition 3.1.4 there are less than (2knA)md

2
m-tuples in Km

I whose
components satisfy this bound. If kn > (2knA)md

2
, two distinct n-tuples of B

are mapped by the fi to the same m-tuple and their difference (α1, . . . , αn) is
an integral solution to the system such that not all αj are zero and |αj | < k for
every j. As n ≥ 2d2m, k >

√
2knA is needed, which is true for k = b3nAc. 2

Proposition 3.1.6 Let K be a number field with degree d and α1, . . . , αr ∈ K.
Then for every polynomial P ∈ KI [x1, . . . , xr] with K-integral coefficients and
degree n,

P (α1, . . . , αr) 6= 0⇒ |P (α1, . . . , αr)| >
(
h(P )cn

)−d
where c ≥ 1 depends only on the elements αi.

Proof. We set c = 2rka where a = 1 + max1≤i≤r h(αi) ≥ 1 and k ∈ N is a
common denominator of the elements αi. Let P (α1, . . . , αr) 6= 0. Since P is a
sum of at most (n+ 1)r ≤ 2rn monomials with coefficients of size at most h(P )
and degrees at most n, for every σ ∈ G(K) we have |σ(knP (α1, . . . , αr))| =
kn|σ(P )(σ(α1), . . . , σ(αr))| ≤ kn2rnh(P )an = h(P )cn. As knP (α1, . . . , αr) is
K-integral and nonzero (1 of Proposition 3.1.4), by 3 of Proposition 3.1.4 is∏
σ∈G(K) σ(knP (α1, . . . , αr)) a nonzero integer. It follows that

kn|P (α1, . . . , αr))| ≥
∏

σ∈G(K), σ 6=id

|σ(knP (α1, . . . , αr))|−1 ≥ (h(P )cn)1−d,

which implies the stated bound (note that h(P ) ≥ 1). 2

Actually, we will need this only for polynomials P ∈ Z[x1, . . . , xr] but the proof
for them is not really simpler than in the present more general case.

Proposition 3.1.7 Let αi, βi ∈ C, 1 ≤ i ≤ r, be nonzero numbers and βi be
pairwise distinct. Then the entire function

f(z) = α1 exp(β1z) + α2 exp(β2z) + · · ·+ αr exp(βrz)

is not identically zero.

Proof. By induction on r. It is clearly true for r = 1. For r > 1 we consider the
derivative of f(z) exp(−β1z). It equals

∑r
i=2 αi(βi − β1) exp((βi − β1)z), which

is not identically zero by inductive assumption. Thus f(z) is not identically
zero. 2
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3.2 Proof of the Gel’fond–Schneider theorem

Let α, β ∈ C be algebraic, α 6= 0, 1 and β 6∈ Q. We fix a value of logα and
assume for contradiction that γ = αβ = exp(β logα) is also algebraic. We take
the number field K = Q(α, β, γ) with degree d = [K : Q] and consider the
(entire, as we will see) function

G(z) =

∑r
i,j=1 ai,j exp((βi+ j)z)∏m

t=1(z − t logα)s

where the ai,j ∈ Z and r,m, s ∈ N are appropriately chosen parameters. We
show that there is a t0 ∈ N, 1 ≤ t0 ≤ m, such that G(t0 logα) 6= 0. Since
the numerator of G(t0 logα) lies in K and K is a number field (now we use the
algebraicity of γ), we can bound |G(t0 logα)| from below using Proposition 3.1.6.
On the other hand, an analytic argument bounds this number from above. We
will see that for an appropriate choice of parameters these bounds contradict
each other. Thus the presumed algebraicity of γ = αβ leads to a contradiction.

We define the parameters ai,j ∈ Z and r,m ∈ N. We want that the entire
function

F (z) =
r∑

i,j=1

ai,j exp((βi+ j)z), ai,j ∈ Z,

is not identically zero, has at each point z = t logα, 1 ≤ t ≤ m, zero of order at
least n and at the same time r ∈ N and |ai,j | are not too big. We take m ∈ N
as fixed, depending only on the degree d of K (at the end we will see that
m = 2d+ 4 suffices for obtaining contradiction), let r run through the multiples
2d2m2, 2d2(m2 + m), 2d2(m2 + 2m), . . . of 2d2m and set n = r2/2d2m. Then
r2 = 2d2mn, n ∈ N and n ≥ rm. As we said, we require that

F (k)(t logα) =
r∑

i,j=1

ai,j(βi+ j)k(γiαj)t = 0, 1 ≤ t ≤ m, 0 ≤ k < n.

This gives a system of mn homogeneous linear equations with r2 unknowns ai,j .
We make the coefficients (βi+j)k(γiαj)t in the systemK-integral by multiplying
the equations by wn+2mr where w ∈ N is a common denominator of α, β and γ.
Since r2 = 2d2mn, by Proposition 3.1.5 there exist ai,j ∈ Z, 1 ≤ i, j ≤ r, not
all zero, for which F (z) has the required zeros and which satisfy |ai,j | < 3r2A
where A = maxi,j,k,t h(wn+2mr(βi + j)k(γiαj)t). By c1, c2, . . . we will denote
positive constants depending only on α and β. Due to n ≥ rm we have

A < wn+2mr(r(1 + h(β)))n(h(γ)h(α))rm ≤ (c1r)n

and see that
|ai,j | < (4c1r)n, 1 ≤ i, j ≤ r.

By Proposition 3.1.7 the function F (z) is not identically zero, because not all
ai,j are zero and the βi + j are distinct and nonzero for distinct pairs i, j due
to β 6∈ Q.
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We define the parameter s ∈ N. We set s to be the minimum order of a
zero of F (z) at some z = t logα, 1 ≤ t ≤ m. By the properties of F (z) is s
well defined and s ≥ n. There is a t0 ∈ N, 1 ≤ t0 ≤ m, such that F has at
z = t0 logα zero of order exactly s; at each z = t logα, 1 ≤ t ≤ m, has F zero
of order at least s. Now is G(z) completely defined and is an entire function
as the zeros of the denominator are canceled by the zeros of F (z). Expanding
F (z) in the Taylor series centered at t0 logα, we get

G(t0 logα) =
F (s)(t0 logα)

s!

∏
1≤t≤m, t 6=t0

((t0 − t) logα)−s 6= 0.

In the next two steps we bound |G(t0 logα)| from below and from above.
We have

F (s)(t0 logα) =
r∑

i,j=1

ai,j(βi+ j)s(γiαj)t0 = P (α, β, γ) 6= 0, P ∈ Z[x, y, z].

P has degree at most s+2mr and coefficients ai,j
(
s
l

)
iljs−l, 0 ≤ l ≤ s, 1 ≤ i, j ≤

r, which implies (by n ≤ s) that h(P ) = ‖P‖ < maxi,j |ai,j |(2r)s ≤ (c2r2)s.
Using Proposition 3.1.6, r2 = 2d2mn ≤ 2d2ms and mr ≤ n ≤ s, we get that

|F (s)(t0 logα)| >
(

(c2r2)scs+2mr
)−d

>
(
ss(c3m)s

)−d
.

Employing the simple estimates 1/s! ≥ 1/ss and |
∏
... . . . | ≥ 1/(m| logα|)ms,

we get the lower bound

|G(t0 logα)| > ss(−d−1)(c4m)−smd.

The upper bound follows by complex analysis: by the maximum modulus
principle,

|G(t0 logα)| ≤ max
|z|=R

|G(z)| ≤ max
|z|=R

|F (z)| ·
m∏
t=1

(R− t| logα|)−s

for any R > m| logα|. We have (by r2 ≤ 4s) that

max
|z|=R

|F (z)| ≤ r2 max
i,j
|ai,j | max

i,j,|z|=R
| exp((βi+ j)z)| ≤ (16c1r)s exp(rR(1 + |β|)).

Using the bound |
∏
... . . . | < (R/2)−ms (if R > 2m| logα|) and that r ≤

d
√

2ms ≤ dm
√
s, we get the upper bound

|G(t0 logα)| < ss/2c
m
√
sR

5 R−mscms6 .

Finally, we let s go to infinity (recall that s ≥ r2/2d2m and r →∞) and set
R =

√
s. The upper bound then becomes

|G(t0 logα)| < ss(1−m)/2(c5c6)ms.

For m = 2d+ 4 or larger and s→∞ this is smaller than the above lower bound
on |G(t0 logα)|, which is a contradiction.
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3.3 Remarks

The proof in Section 3.2 is based on “Appendix I. The Transcendence of e and
π” in Lang [23, pp. 867–873]. (In retrospect, this was not the best choice
to learn about the Gel’fond–Schneider theorem but so it was.) Lang proves a
more general result (due originally to him), which can be found also in Baker
[4]. Further sources for the Gel’fond–Schneider theorem are Filaseta [12] and
Gel’fond and Linnik [18], [17] (in both cases only for real α > 0, β) and Baker
and Wüstholz [5]. For the proofs of unproved results on number fields mentioned
in Section 3.1 (and many more) see Marcus [25]. For stronger versions of Siegel’s
lemma for number fields see Bombieri and Gubler [7]. For the biografies of Siegel,
Gel’fond and Schneider and information on Hilbert’s problems (including the
full text of Hilbert’s address) see Yandell [45].

Clearly, exp(β logα) 6= α′ for algebraic α′ means that β logα − logα′ 6= 0.
So an equivalent formulation of Theorem 3.0.1 is that if α1, α2 ∈ C are nonzero
algebraic numbers whose logarithms are linearly independent over Q then they
are linearly independent over algebraic numbers, β1 logα1 +β2 logα2 6= 0 when-
ever βi ∈ C are algebraic, not both zero. Generalization of this result to linear
forms with more than two logarithms was achieved by Baker ([3] and [4]), and
he opened by this a new era in number theory. But this will be topic of another
text.
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[38] V. G. Sprindžuk, Classical Diophantine Equations in two Unknowns,
Nauka, Moskva, 1982 (Russian).

[39] J. Steuding, Diophantine Analysis, Chapman & Hall/CRC, 2005.

[40] A. Thue, Om en generel i store hele tal uløsbar ligning, Kra. Vidensk. Selsk.
Skrifter. I. Mat. Nat. Kl. No. 7. Kra. 1908. (1908), 13 pp.
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