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§1 Test modules for projectivity and injectivity

A useful method for testing projectivity and injectivity of modules consists in
evaluations of appropriate extension groups Ext. Of course, a module M is projec-
tive iff ExtR(M,N) = 0 for all modules N ∈ Mod-R. Similarly, N is injective iff
ExtR(M,N) = 0 for all modules M ∈ Mod-R.
When testing the projectivity or injectivity, we need not check all the groups

ExtR(M,N). In fact, the evaluation of a single group is enough. For each mod-
ule M , there exist modules K and L such that M is projective (injective) iff
ExtR(M,K) = 0 (ExtR(L,M) = 0). The problem is that the modules K and
L depend on M , and they can be quite big provided M is such. We would like to
get rid of this dependence, deciding the projectivity or injectivity of M by calcu-
lating a single Ext group using a fixed module N . This leads to the following basic
definition:

Definition 1.1. Let R be a ring and N be a module.
(i) N is said to be a test module for projectivity (or a p-test module) provided

for all M ∈ Mod-R, M is projective iff ExtR(M,N) = 0.
The class of all p-test modules is called the p-test class and denoted by PT .
(ii) N is said to be a test module for injectivity (or an i-test module) provided

for all M ∈ Mod-R, M is injective iff ExtR(N,M) = 0.
The class of all i-test modules is called the i-test class and denoted by IT .

In this section, we deal with existence of p-test and i-test modules. We show that
the i-test class is a proper class for an arbitrary ring. Further, the p-test class is a
proper class for any right-perfect ring. The more difficult question of existence of
p-test modules over non-right perfect rings will be studied in the next two sections,
since the answer cannot be given using only algebraic methods.
First, we note that projectivity and injectivity of a given module can be tested

by checking a single Ext group:

Lemma 1.2. Let R be a ring.
(i) Let M ∈ Mod-R and

0 −→ K
ν
−→ P −→ M −→ 0

be a short exact sequence in Mod-R such that P is projective. Then M is projective
iff ExtR(M,K) = 0.
(ii) Let N ∈ Mod-R and

0 −→ N −→ I −→ L −→ 0

be a short exact sequence in Mod-R such that I is injective. Then N is injective
iff ExtR(L,N) = 0.

Proof. (i) Using the definition of Ext by Hom groups of the given projective pre-
sentation of M , we get ExtR(M,K) ≃ HomR(K,K)/Im(HomR(ν,K)). Assume
ExtR(M,K) = 0. Then idK = πν, for some π ∈ HomR(P,K). So Ker(π) is a
summand of P and Ker(π) ≃ P/Im(ν) ≃ M .
(ii) Dual to (i). ¤

Using Baer’s criterion for injectivity, it is easy to see that i-test modules exist
over an arbitrary ring R:
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Proposition 1.3. Let R be a ring. Let E be the set of all proper essential right
ideals of R. Put M = ⊕

∑

I∈E R/I. Then M is an i-test module.

Proof. Assume ExtR(M,N) = 0. Let J be a left ideal of R and φ ∈ HomR(J,N).
There exist J ⊆ I ∈ E and φ̄ ∈ HomR(I,N) such that φ̄ ↾ J = φ. By the premise,
ExtR(R/I,N) = 0. Since the sequence

0 −→ HomR(R/I,N) −→ HomR(R,N) −→ HomR(I,N) −→ ExtR(R/I,N) = 0

is exact, there is some ϕ ∈ HomR(R,N) such that ϕ ↾ I = φ̄. By the Baer’s
criterion, N is injective. ¤

Of course, any module possessing a summand isomorphic to an i-test module is
likewise i-test. This implies

Corollary 1.4. For any ring R, there is a proper class of i-test modules.

Clearly, each (projective) module is i-test iff the ring R is semisimple. Denote
by P the class of all projective modules. Then IT ⊆ Mod-R \ P provided R is not
semisimple. Though IT is a proper class, almost never does IT =Mod-R \P. We
shall consider this problem in detail in §4.

Proposition 1.5. Let R be a right perfect ring. Denote by M the set of all
maximal right ideals of R. Put N = ⊕

∑

I∈M R/I. Then N is a p-test module.

Proof. Assume ExtR(M,N) = 0 and M is non-projective. Let

0 −→ K −→ P −→ M −→ 0

be a projective cover of M , i.e. a short exact sequence with P projective and
K a superfluous submodule of P . By the premise, K 6= 0 and K has a maximal
submodule, L. Then K/L is isomorphic to a summand of N , and ExtR(M,K/L) =
0. Let π ∈ HomR(K,K/L) be the projection. By the definition of Ext using Hom
groups of the projective cover of M , there is a φ ∈ HomR(P,K/L) such that
φ ↾ K = π. Then Ker(φ) is a maximal submodule of P and K ⊆ Rad(P ) ⊆
Ker(φ) ⊂ P . Thus, π = φ ↾ K = 0, a contradiction. ¤

Corollary 1.6. Let R be a right perfect ring. Then there is a proper class of p-test
modules.

Clearly, each (injective) module is p-test iff the ring R is semisimple. Denote
by I the class of all injective modules. Then PT ⊆ Mod-R \ I provided R is not
semisimple. Though PT is a proper class over any right perfect ring, almost never
does PT =Mod-R \ I. Also this problem will be considered in detail in §4.

§2 The use of uniformization principles

In this and in the subsequent section, we show how methods and results of infinite
combinatorics are used to answer the question of existence of p-test modules over
non-right perfect rings. The answer turns out to be independent of ZFC.
In this section, we show that there is no p-test module over any non-right perfect

ring, assuming Shelah’s uniformization principle UP. Moreover, there exist non-
right perfect rings over which there are no finitely generated p-test modules (in
ZFC).
We start with several notions from infinite combinatorics:
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Definition 2.1. Let R be a non-right perfect ring. By Bass’ Theorem P, there
exist elements ai ∈ R, i < ℵ0, such that (Rai . . . a0; i < ℵ0) is a strictly decreasing
chain of principal left ideals of R. Let κ be an infinite cardinal and E be a subset
of κ+ such that E ⊆ {α < κ+; cf (α) = ℵ0}. Let (nν ; ν ∈ E) be a ladder system ,
i.e. for each ν ∈ E, let (nν(i); i < ℵ0) be a strictly increasing sequence of non-limit
ordinals less that ν such that supi<ℵ0 nν(i) = ν.
Let (Rα;α < κ+) be a system of free modules defined as follows: Rα = R provided
α ∈ κ+ \ E, and Rα = R(ℵ0) provided α ∈ E. For α ∈ κ+ \ E, denote by 1α the
canonical generator of Rα, and for α ∈ E let {1α,i | i < ℵ0} be the canonical basis
of Rα. Note that by Bass’ lemma, for every ν ∈ E, the module

Sν =
∑

i<ℵ0

(1ν,i − 1ν,i+1 · ai)R

is a free submodule of Rν such that Rν/Sν is not projective. Put P = ⊕
∑

α<κ+ Rα,
Q =

∑

α∈E Qα, and Qα =
∑

i<ℵ0
gαiR for all α ∈ E, where gαi = (1nα(i) − 1α,i +

1α,i+1 · ai) ∈ P , for all α ∈ E and i < ℵ0. Finally, put M = P/Q ∈ Mod-R.
Recall that E is a stationary subset of a cardinal λ provided E has a non-empty
intersection with any closed and cofinal subset of λ.

Lemma 2.2. If E is a stationary subset of κ+, then proj.dim(M) = 1.

Proof. Put M0 = 0 and, for each 0 < α < κ+, Mα = (⊕
∑

β<α Rβ + Q)/Q.

Then (Mα;α < κ+) is a κ+-filtration of M . Clearly, Q = ⊕
∑

α∈E Qα, Qα =
⊕

∑

i<ℵ0
gαiR for all α ∈ E, and Ann(gαi) = 0 for all α ∈ E and i < ℵ0. Hence,

proj.dim(M) ≤ 1. Proving indirectly, assume proj.dim(M) = 0, i.e. M is projec-
tive. By Kaplansky’s structure theorem for projective modules, there exist modules
(Pα;α < κ+) such that gen (Pα) ≤ ℵ0 for all α < κ+ and M = ⊕

∑

α<κ+ Pα. Put
N0 = 0 and, for each 0 < α < κ+, Nα = ⊕

∑

β<α Pβ . Clearly, (Nα;α < κ+) is a κ+-

filtration of M . Since the set C = {α < κ+;Mα = Nα} is closed and cofinal in κ+,
Eklof’s lemma implies there exists ν ∈ E ∩C. Of course, D = C ∩{α < κ+; ν < α}
is also closed and cofinal in κ+, whence there is some µ ∈ E∩D. Then X = Nµ/Nν

is a projective module. On the other hand, put Y = (⊕
∑

ν<α<µ Rα+Q)/Q. Then

X = Mµ/Mν = Mν+1/Mν + (Y +Mν)/Mν . By 2.1, Y ∩ Mν+1 ⊆ Mν , whence
Mν+1/Mν ≃ Rν/Sν is a non-projective summand of X, a contradiction. ¤

The following (meta-) lemma is proved by forcing in [Sh, §2] or [ESh, §2]:

Lemma 2.3. Let κ be a cardinal such that cf (κ) = ℵ0. Consider the following
assertion
UPκ: “there exist a stationary subset E of κ

+ satisfying E ⊆ {α < κ+; cf (α) = ℵ0}
and a ladder system (nν ; ν ∈ E) such that for each cardinal λ < κ and each sequence
(hν ; ν ∈ E) of mappings from ℵ0 to λ there is a mapping f : κ+ → λ such that
∀ ν ∈ E ∃ j < ℵ0 ∀ j < i < ℵ0 : f(nν(i)) = hν(i)”.
Denote by UP the assertion “UPκ holds for every uncountable cardinal κ such that
cf (κ) = ℵ0 ”. Then UP is consistent with ZFC + GCH.

The principle UPκ says that there are a stationary set E ⊆ κ+ and a ladder
system such that for all colourings of all ladders from the ladder system by < κ
colours there is a uniform colouring of the whole κ+ which coincides with each
particular colouring on almost all steps of the particular ladder.
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Lemma 2.4. Let κ be a cardinal such that cf (κ) = ℵ0. Assume UPκ holds. Let
M = P/Q be the module corresponding to the E and (nν(i); ν ∈ E) from UPκ

by 2.1. Then ExtR (M,N) = 0 for all N ∈ R-mod such that card (N) < κ.

Proof. We have ExtR (M,N) ≃ HomR (Q,N)/Im(HomR (τ,N)), τ being the in-
clusion of Q into P . We are to prove that every x ∈ HomR (Q,N) is a restriction of
some y ∈ HomR (P,N), i.e. x = yτ . Take x ∈ HomR (Q,N). W.l.o.g., we can as-
sume that the support of the module N is λ = card (N). Using the notation of 2.1,
for each ν ∈ E, we define hν : ℵ0 → λ by hν(i) = x(gνi) for all i < ℵ0. By UPκ,
there exists f : κ+ → λ such that ∀ ν ∈ E∃ jν < ℵ0 ∀ jν < i < ℵ0 : hν(i) = f(nν(i)).
Define y ∈ HomR (P,N) as follows: Take α < κ+.
If α = nν(i) for some ν ∈ E and jν < i < ℵ0, put y(1α) = f(α);
If α does not satisfy (I) and α /∈ E, put y(1α) = 0;
If α ∈ E, put y(1α,i) = 0 provided i > jα. For 0 ≤ i ≤ jα, define y(1α,i) by

induction on i (downwards): If there exist ν ∈ E and k > jν such that nα(i) =
nν(k), put y(1α,i) = f(nα(i)) − x(gαi) + y(1α,i+1) · ai. If there are no ν ∈ E and
k > jν such that nα(i) = nν(k), put y(1α,i) = −x(gαi) + y(1α,i+1) · ai.
It remains to prove that x(gαi) = y(gαi) for all α ∈ E and i < ℵ0. Put β = nα(i).

Of course, y(gαi) = y(1β) − y(1α,i) + y(1α,i+1) · ai. We distinguish the following
three cases:

i > jα. Then y(1β) = f(β) = hα(i) = x(gαi) and y(1α,i) = y(1α,i+1) = 0,
whence y(gαi) = x(gαi);

i ≤ jα, but there exist ν ∈ E and k > jν such that β = nν(k). Then y(1β) = f(β)
and y(1α,i) = f(β)− x(gαi) + y(1α,i+1) · ai, whence y(gαi) = x(gαi);

i ≤ jα and there are no ν ∈ E and k > jν such that β = nν(k). Then y(1β) = 0
and y(1α,i) = −x(gαi) + y(1α,i+1) · ai whence y(gαi) = x(gαi), q.e.d. ¤

Theorem 2.5. The assertion “There is no p-test module over any non-right perfect
ring” is consistent with ZFC + GCH.

Proof. By 2.3, we assume UP . Let N be a module. Let κ be a cardinal such
that κ > card(N). By 2.2 and 2.4, there is a non-projective module M such that
ExtR(M,N) = 0. Hence, N is not a p-test module. ¤

The following example shows (in ZFC) that there exist non-right perfect rings
without finitely generated p-test modules:

Example 2.6. Let R be a right self-injective non-right perfect ring (e.g. let R be
the ring of all linear transformations of an infinite dimensional right linear space
over a skew-field). Then no finitely generated module is a p-test module.

Proof. Let ai, i < ℵ0 be as in 2.1. Let 1i, i < ℵ0 be the canonical basis of the free
module F = R(ℵ0) and let G =

∑

i<ℵ0
(1i − 1i+1 · ai)R ⊆ F . Put M = F/G. By

Bass’ lemma, G is a free module, andM is not projective. IfN is a finitely generated
module, we have N ≃ R(n)/K for some n < ℵ0 and K ⊆ R(n). Since the sequence
0 −→ G −→ F −→ M −→ 0 is exact, we get 0 = ExtR(G,K) −→ Ext2R(M,K) −→
Ext2R(F,K) = 0, and Ext2R(M,K) = 0. Since the sequence 0 −→ K −→ R(n) −→
N −→ 0 is exact and R is right self-injective, we have 0 = ExtR(M,R(n)) −→
ExtR(M,N) −→ Ext2R(M,K) = 0, whence ExtR(M,N) = 0. ¤

For right hereditary rings, the question of existence of p-test modules can be
decided on free modules:
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Proposition 2.7. Let R be a ring and κ a cardinal. Then the following conditions
are equivalent:
(i) There exists a p-test module N such that gen(N) ≤ κ and proj.dim(N) ≤ 1;
(ii) R(κ) is a p-test module.

Proof. The non-trivial part is (i) =⇒ (ii) : Let M be a module such that
ExtR(M,R(κ)) = 0. By the premise, there is an exact sequence 0→ K → R(κ) →
N → 0, where K is projective. Then 0 = ExtR (M,R(κ)) → ExtR (M,N) →
Ext2R (M,K) = 0, whence ExtR (M,N) = 0, and M is projective by (i). ¤

Corollary 2.8. Let R be a right hereditary ring. If there is a p-test module in
Mod-R, then there is a cardinal κ such that each free module of rank ≥ κ is p-test.

Proof. Take κ = min{gen(N);N is p-test } and apply 2.7. ¤

§3 Weak diamonds and the existence of p-test modules

The main purpose of this section is to prove consistency of existence of p-test
modules for certain classes of non-right perfect rings. An essential tool for this
is a combinatorial principle called generalized weak diamond (and denoted by Ψ).
Since Ψ is a consequence of the axiom of constructibility, all consequences of Ψ are
consistent with ZFC + GCH. Our proof is in three steps:
Step I: by purely algebraic means, the existence of modules testing projectivity of
modules of “small” size is obtained;
Step II: using Ψ, the testing is extended to modules of regular cardinality;
Step III: Shelah’s Compactness Theorem is applied to cover the singular cardinality
case.
Note that the proof requires the generalized weak diamond only in Step II, the
other steps being proved in ZFC.
In this way, the existence of p-test modules is achieved for all right hereditary

non-right perfect rings. Further results are obtained in the particular cases when
(1) R is a Dedekind domain with card(R) ≤ ℵ1 such that R is not a complete
discrete valuation ring; and
(2) R is a simple von Neumann regular ring with card(R) ≤ ℵ1 such that R has
countable dimension over its center.
In the case 1), p-test modules include all non-zero free modules. In the case 2),
all non-zero countably generated modules are p-test. Hence, also all non-zero free
modules, and semisimple modules, are p-test in the case 2).

Step I for the Dedekind domains is a well-known generalization of the classical
result of Stein for Z. The generalization is due to Nunke ([Nu, §8]):

Proposition 3.1. Let R be a Dedekind domain which is not a complete discrete
valuation ring. Let F be a non-zero free module, and M be a module of countable
rank. Then M is projective iff ExtR(M,F ) = 0.

We turn to Step I for the von Neumann regular rings:

Lemma 3.2. Let R be a von Neumann regular ring such that dimK(R) ≤ ℵ0, K
being the center of R. Then each left (right) ideal of R is countably generated.
Hence R is (left and right) hereditary. In particular, any countable von Neumann
regular ring is hereditary.
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Proof. Let I be a right ideal of R. Then dimK(I) ≤ ℵ0. Let B = {bn;n < κ},
κ ≤ ℵ0, be a left K-basis of I. Then I =

∑

n<κ bnR, and I is countably generated.
Since R is regular, I is projective, and R is right hereditary. The left-hand version
follows similarly. ¤

Proposition 3.3. Let R be a simple von Neumann regular ring. Denote by K
the center of R. Assume dimK(R) ≤ ℵ0. Let N be a non-zero countably gener-
ated module. Let M be any countably generated module. Then M is projective iff
ExtR(M,N) = 0.

Proof. Let ExtR(M,N) = 0. Let M ′ be any finitely generated submodule of M .
We prove that M ′ is projective: We have M ′ ≃ R(m)/I for some 0 < m < ℵ0
and I ∈ Mod-R. Proving indirectly, assume gen(I) ≥ ℵ0. Then the regularity of R
implies I is a direct sum of cyclic modules, I = ⊕

∑

α<κ xαR. Since ExtR(M,N) =

0, 3.2 implies ExtR(M
′, N) = 0. Then also ExtR(R

(m)/I ′, N) = 0, where I ′ =
⊕

∑

α∈C xαR, for a countably infinite subset C ⊆ κ. Since each xαR is cyclic
and projective, there exist idempotents 0 6= eα, α ∈ C, such that xαR ≃ eαR
for all α ∈ C. Since R is a simple ring, we have Neα 6= 0 for all α ∈ C. In
particular, dimK(HomR(I

′, N)) = dimK(
∏

α∈C Neα) ≥ dimK(K
ℵ0) > ℵ0, while

dimK(HomR(R
(m), N)) = dimK(N

(m)) ≤ ℵ0. This contradicts the exactness of
the sequence

0 −→ HomR(R
(m)/I ′, N) −→ HomR(R

(m), N) −→ HomR(I
′, N) −→ 0.

Hence, gen(I) < ℵ0, I is a summand of R
(m) (as R is regular), andM ′ is projective.

Thus,M is ℵ0-projective, and the assertion is true providedM is finitely generated.
If gen(M) = ℵ0, we use the following

Lemma 3.4. Let R be a right hereditary von Neumann regular ring. Let M be an
ℵ0-projective module with gen(M) = ℵ0. Then M is projective.

Proof. We have M = R(ℵ0)/I for some I ⊆ R(ℵ0). Put Mn = (R
(n) + I)/I and

In = R(n)∩I, n < ℵ0. ThenM is a union of the non-decreasing chain (Mn;n < ℵ0).
By the premise,Mn ≃ R(n)/In is projective, and In is finitely generated. Therefore,
we can define two sets, (An; 0 < n < ℵ0), and (Bn; 0 < n < ℵ0), of finitely generated
submodules of R(ℵ0) by

Bn ⊕ (In +R(n−1)) = R(n) and In+1 = In ⊕ An,

for each 0 < n < ℵ0. Then R(ℵ0) = I1 ⊕ (⊕
∑

0<n<ℵ0
An) ⊕ (⊕

∑

0<n<ℵ0
Bn).

Now, I = ∪0<n<ℵ0In, I = I1 ⊕ (⊕
∑

0<n<ℵ0
An), and M ≃ ⊕

∑

0<n<ℵ0
Bn is

projective. ¤

For Step II, we start with combinatorial principles that follow from the axiom
of constructibility:

Definition 3.5. Let κ be a regular uncountable cardinal and E be a stationary
subset of κ. Denote by ♦κ(E) the Jensen’s diamond(for κ and E), i.e. the assertion
“ Let A be any set of cardinality κ and (Aα;α < κ) a κ-filtration of A. Then

there is a system {Sα;α < κ} such that Sα ⊆ Aα for all α < κ, and the set
{α ∈ E;X ∩ Aα = Sα} is stationary in κ, for every X ⊆ A.”
Denote by Φκ(E) the weak diamond(for κ and E), i.e. the assertion
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“ Let A be any set of cardinality κ and (Aα;α < κ) a κ-filtration of A. For each
α ∈ E, let Pα : Exp(Aα)→ {0, 1} be given. Then there is φ : E → {0, 1} such that
the set {α ∈ E;Pα(X ∩ Aα) = φ(α)} is stationary in κ, for every X ⊆ A.”
Denote by Ψκ(E) the assertion
“ Let A be any set of cardinality κ and (Aα;α < κ) a κ-filtration of A. For

each α ∈ E, let 2 ≤ pα < ℵ0 and let Pα : Exp(Aα) → pα be given. Then there is
ψ : E → ℵ0 such that ψ(α) ∈ pα for all α ∈ E, and the set {α ∈ E;Pα(X ∩ Aα) =
ψ(α)} is stationary in κ, for every X ⊆ A.”
Finally, denote by Ψ the generalized weak diamond, i.e. the assertion:
“ Ψκ(E) holds for each regular uncountable cardinal κ and each stationary subset

E ⊆ κ ”.

Note that Ψκ(E) says that given colourings of all subsets of all members of a
filtration of A by a varying finite number of colours, there is a colour estimate
function ψ which works well for a large number of indices. This principle is less
well-known, but it will be very useful to us. We notice its position between the
better known diamond principles:

Lemma 3.6. (i) Let κ be a regular uncountable cardinal and E be a stationary
subset of κ. Then ♦κ(E) =⇒ Ψκ(E) =⇒ Φκ(E).
(ii) Ψ is consistent with ZFC + GCH.

Proof. (i) This is clear, taking ψ(α) = Pα(Sα) for all α ∈ E for the first implication,
and taking pα = 2 for all α < κ for the second.
(ii) Assume the axiom of constructibility. Then, by a well-known result of Jensen,

♦κ(E) holds for each regular uncountable cardinal κ and each stationary subset E
of κ. Note that the Jensen’s diamond for κ = λ+ and E = λ+ implies 2λ = λ+.
Hence, GCH holds, and (i) implies that the assertion holds true. ¤

In general, by [Sh, Ch.XIV], none of the implications from 3.6(i) can be reversed.

Lemma 3.7. Let κ be a regular uncountable cardinal and E a stationary subset of
κ. Assume Ψκ(E). Let R be a ring with card(R) ≤ κ. Let N be a module such that
card(I(N)) ≤ κ. Let M be a κ-projective module such that gen(M) = κ and there
is a κ-filtration (Cα;α < κ) of M such that E = {α < κ;ExtR(Cα+1/Cα, N) 6= 0}.
Then ExtR(M,N) 6= 0.

Proof. First, we take a κ-filtration (Dα;α < κ) of the set κ and elements mα ∈ M ,
α < κ, such that Cα =

∑

β∈Dα
mβR, for all α < κ. Let (Bα;α < κ) be a κ-

filtration of the Z-module I = I(N). Denote by ν the inclusion of N into I, by
π the projection of I onto I/N , and by να the inclusion of Cα into Cα+1, for all
α < κ.
Take α ∈ E. Let Xα = HomR(Cα, N) and Yα = Im(Hom(να, N)). By the
premise, there is some fα ∈ Xα \ Yα. Denote by oα the order of fα + Yα in the
group Xα/Yα = ExtR(Cα+1/Cα, N).
We are going to use the principle Ψκ(E) in the following setting: A = κ × I and
Aα = Dα × Bα, α < κ. Let α ∈ E. If oα = ℵ0, we put pα = 2. If oα < ℵ0, we
define pα = oα. In order to define the colourings Pα, α ∈ E, we equip the set of all
mappings from Dα to Bα with an equivalence relation ∼α: we put u ∼α v iff there
are n ∈ Z and y ∈ Yα such that v = u+ nfα ↾ Dα + y ↾ Dα. Note that the number
n is unique (unique modulo pα) provided oα = ℵ0 (oα < ℵ0). Now, for each α ∈ E,
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we take a colouring Pα : Exp(Aα)→ pα such that Pα(u) = Pα(v) iff the number n
given by the pair (u, v) is divisible by pα.
Let ψ : E → ℵ0 be the mapping corresponding to this setting by Ψκ(E). In
order to prove that ExtR(M,N) 6= 0, we shall construct g ∈ HomR(M, I/N) \
Im(HomR(M,π)). By induction on α < κ, we define gα ∈ HomR(Cα, I/N) so
that gα+1 ↾ Cα = gα for each α < κ, and gα = ∪β<αgβ for all limit α < κ.
Put g0 = 0. Assume gα is defined for an ordinal α < κ. We distinguish the following
two cases:
(I) α ∈ E and there exists f ∈ HomR(Cα+1, I) such that Im(fνα ↾ Dα) ⊆ Bα,
Pα(fνα ↾ Dα) = ψ(α), and gα = πfνα.
(II) = not (I).
In the case (I), take an f satisfying the conditions of (I). The injectivity of I yields
the existence of hα ∈ HomR(Cα+1, I) such that hανα = fνα−fα. Put gα+1 = πhα.
Then gα+1να = πfνα − πfα = gα.
In the case (II), the projectivity of Cα yields the existence of hα ∈ HomR(Cα, I)
such that gα = πhα. The injectivity of I gives some hα+1 ∈ HomR(Cα+1, I) such
that hα = hα+1να. Put gα+1 = πhα+1. Then gα+1 ↾ Cα = gα.
Finally, put g = ∪α<κgα. Then g ∈ HomR(M, I/N). Proving indirectly, suppose
there is h′ ∈ HomR(M, I) such that g = πh′. Note that the set {α < κ; Im(h′ ↾

Dα) ⊆ Bα} is closed and cofinal in κ. Put X = ∪α<κ(h
′ ↾ Dα). By the premise,

there is an α ∈ E such that g ↾ Cα = πhνα, Pα(hνα ↾ Dα) = Pα(X ∩ Aα) = ψ(α),
and Im(hνα ↾ Dα) ⊆ Bα, where h = h′ ↾ Cα+1. Hence, the case (I) occurs, and
π(hα−h) = 0. Then yα = (hα−h)να ∈ Yα. Moreover, fνα = hνα+fα+yα, whence
ψ(α) = Pα(fνα ↾ Dα) = Pα(hνα ↾ Dα + fα ↾ Dα + yα ↾ Dα) 6= Pα(hνα ↾ Dα), a
contradiction. Thus g /∈ Im(HomR(M,π)). ¤

Lemma 3.8. Let κ be a regular uncountable cardinal. Assume Ψκ(E) holds for
all stationary subsets of κ. Let R be a ring with card(R) ≤ κ. Let N be a module
such that card(I(N)) ≤ κ. Let M be a κ-projective module such that gen(M) = κ.
Then the following conditions are equivalent:
(i) ExtR(M,N) = 0 ;
(ii) There is a κ-filtration (Cα;α < κ) of M such that ExtR(Cα+1/Cα, N) = 0 for
all α < κ.
Moreover, the implication (ii) =⇒ (i) holds in ZFC.

Proof. (i) =⇒ (ii): Since gen(M) = κ, there is a κ-filtration, (Dα;α < κ),
of the module M . By induction, we define a mapping η : κ → κ as follows.
First, η(0) = 0. If η(α) is defined, then either ExtR(Dβ/Dη(α), N) = 0 for all
β ≥ η(α) and we put η(α + 1) = η(α) + 1, or there is a smallest η(α) < β < κ
such that ExtR(Dβ/Dη(α), N) 6= 0 and we put η(α + 1) = β. For α limit, we put
η(α) = supβ<αη(β). Then (Dη(α);α < κ) is a κ-filtration of the module M . Let
E = {α < κ;ExtR(Dη(α+1)/Dη(α), N) 6= 0}. By 3.7, E is not stationary in κ. Let
C be a closed and cofinal subset of κ with E ∩ C = ∅ and 0 ∈ C. Let θ : κ → C
be a strictly increasing continuous mapping of κ onto C. For each α < κ, put
Cα = Dηθ(α). Then (Cα;α < κ) is a κ-filtration of the module M satisfying (ii).
(ii) =⇒ (i): We prove in ZFC. Denote by π the projection of I = I(N) onto
I/N . For α < κ, let να be the inclusion of Cα into Cα+1. By induction on α < κ
we define mappings ϕα : HomR(Cα, I/N) → HomR(Cα, I) such that for each
f ∈ HomR(Cα, I/N), πϕα(f) = f , and ϕα(fνα) = ϕβ(f)να provided β = α + 1.
For α = 0 put ϕα = 0. Let 0 < α < κ and f ∈ HomR(Cα+1, I/N). Since Cα+1
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is projective, there is g ∈ HomR(Cα+1, I) with f = πg. As gνα − ϕα(fνα) ∈
HomR(Cα, N) and ExtR(Cα+1/Cα, N) = 0, there is h ∈ HomR(Cα+1, N) such
that hνα = gνα − ϕα(fνα). We put ϕα+1(f) = g − h. If α is limit, define ϕα =
∪β<αϕβ . Then f = πϕα(f), for all f ∈ HomR(Cα, I/N). Finally, put ϕ = ∪α<κϕα.
Then f = πϕ(f), for all f ∈ HomR(Cα, I/N), and ExtR(M,N) = 0. ¤

Definition 3.9. LetM be a module and λ ≥ ℵ0. Assume that for some submodules
of M , sets called “bases” are given. If N is a submodule of M such that N has at
least one “basis”, we say that N is “free”. We introduce the following axioms:
(Ax I) If N is a “free” submodule of M and F is a “basis” of N , then F is

a set of submodules of N , F is closed under unions of chains, and for each subset
A ⊆ N there is some F ∈ F such that A ⊆ F and card(F ) ≤ card(A) + λ.
(Ax II) If N is a “free” submodule of M , F is a “basis” of N and C ∈ F ,

then F ↾ C = {D ∈ F ;D ⊆ C} is a “basis” of C.
(Ax III) If N is a “free” submodule of M , C is an element of a “basis” of N ,

and C has a “basis” G, then N has a “basis” F such that G = F ↾ C.
(Ax IV) Suppose (Nα;α < λ) is a smooth chain of “free” submodules ofM , for

each α < λ a “basis” Fα of Nα is given so that α < β < λ implies Fα = Fβ ↾ Nα.
Then ∪α<λNα has a “basis” consisting of all sets of the form ∪α<λCα, where
(Cα;α < λ) is a chain of submodules of M , and Cα ∈ Fα for all α < λ.

Now, we formulate the version of Shelah’s Compactness Theorem that we shall
need for Step III. Its proof, using game theoretic arguments, appears e.g. in [Ho,
§4] or [EM, Ch.IV]:

Theorem 3.10. Let R be a ring and M be a module such that card(M) = κ is a
singular cardinal. Let λ be an infinite cardinal such that card(R) ≤ λ < κ. Assume
the axioms (Ax I) - (Ax IV) from 3.8 hold, and every submodule ofM of cardinality
< κ is “free”. Then M is “free”.

Corollary 3.11. Let R be a ring and M be a module such that card(M) = κ is
a singular cardinal. Assume that card(R) < κ and M is κ-projective. Then M is
projective.

Proof. We shall say that a submoduleN ofM is “free” provided there are a cardinal
µ and countably generated projective modules Pα ⊆ N , α < µ, such that N =
⊕

∑

α<µ Pα. Then the set F = {C;∃A ⊆ µ : C = ⊕
∑

α∈A Pα} is called a “basis”

of the module N . Put λ = card(R)×ℵ0. Then each countably generated projective
module has cardinality ≤ λ. It is easy to see that the notions in quotes satisfy
axioms (Ax I) - (Ax IV) of 3.9. On the other hand, Kaplansky’s structure theorem
for projective modules implies that a module is “free” iff it is projective. Hence,
the premise and 3.10 imply that M is projective. ¤

Combining Steps II and III, we obtain

Theorem 3.12. Assume Ψ. Let R be a right hereditary ring with card(R) ≤ ℵ1.
Let N be a module such that card(I(N)) ≤ ℵ1. Assume that ExtR(M,N) = 0
implies M is projective, for every countably generated module M . Then N is a
p-test module.

Proof. By induction on gen(M) = κ, we prove that M is projective whenever M is
a module such that ExtR(M,N) = 0. If κ ≤ ℵ0, the assertion holds by the premise.
Let κ be a regular uncountable cardinal. Since R is right hereditary, 3.8 implies
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M has a κ-filtration (Cα;α < κ) such that ExtR(Cα+1/Cα, N) = 0 for all α < κ.
By the induction premise, all the modules Cα+1/Cα, α < κ, are projective, whence
M = ∪α<κCα is projective.
Let κ be singular. Since R is right hereditary, M is κ-projective, by the induction
premise. Now, 3.11 terminates the proof. ¤

For right hereditary rings, 2.8 shows that the existence of p-test modules implies
the existence of free p-test modules. This occurs under Ψ:

Theorem 3.13. Assume Ψ. Let R be a right hereditary ring.
(i) Let κ = card(R)× ℵ0. Then each free module of rank ≥ 2

κ is p-test.
(ii) Let λ ≥ ℵ0 be a cardinal such that card(I(R(λ))) ≤ λ. Then each free module
of rank ≥ λ is p-test.

Proof. (i) First, we prove that card(I(R(2
κ))) ≤ 2κ. Put M = R(2

κ). Then there
is a chain of modules

M ≃ HomR(R,M) ⊆ HomZ(R,M) ⊆ HomZ(R,D) = I,

where D is the divisible hull of the (right) Z-module M . Since R is a flat left
R-module, I is injective. Since card(D) = card(M) = 2κ, we infer that card(I) ≤
(2κ)κ = 2κ. This proves card(I(R(2

κ))) ≤ 2κ. Now, it suffices to show that
(ii) R(λ) is p-test provided λ is an infinite cardinal and card(I(R(λ))) ≤ λ. Assume
that M is a ≤ λ generated module such that ExtR(M,R(λ)) = 0. Let K be a
submodule of R(λ) such that M ≃ R(λ)/K. By the premise, gen(K) ≤ λ. Since R
is right hereditary, we infer that ExtR(M,K) = 0, and M is projective by 1.2(i).
Now, starting from λ, and using 3.8 and 3.11 for induction in regular and singular
cardinals, respectively, we obtain the claim. ¤

Stronger results hold true for the particular cases of Dedekind domains and of
von Neumann regular rings:

Theorem 3.14. Assume Ψ. Let R be a Dedekind domain such that R is not a
complete discrete valuation ring, and card(R) ≤ ℵ1. Then any non-zero free module
is p-test.

Proof. It suffices to prove that R is p-test. Denote by K the quotient field of R.
Then K is an injective module, R ⊆ K, and card(K) = card(R) ≤ ℵ1. Hence, 3.1
and 3.12 show that R is a p-test module. ¤

Theorem 3.15. Assume Ψ. Let R be a right hereditary von Neumann regular ring
such that card(I(R(ℵ0))) ≤ ℵ1. Then each free module of rank ≥ ℵ0 is p-test.

Proof. By 3.4 and 3.12, we have to prove that ExtR(M,R(ℵ0)) = 0 implies M
is projective for each finitely generated module M . Let M ≃ R(n)/K. Since R
is regular, there are a cardinal κ and elements 0 6= xα ∈ K, α < κ, such that
K = ⊕

∑

α<κ xαR.
Proving indirectly, assume κ ≥ ℵ0. Take a system of pairwise disjoint sets Ak, k <
ℵ0, such that card(Ak) = n for each k < ℵ0, and ℵ0 = ∪k<ℵ0Ak. For each k < ℵ0,
we identify R(n) with R(Ak) via an R-isomorphism νk. Define f ∈ HomR(K,R(ℵ0))
by f(xα) = να(xα) provided α < ℵ0, and by f(xα) = 0 otherwise. Let g ∈
HomR(R,R(ℵ0)). Then Im(g) ⊆ R(m) for some m < ℵ0, and g ↾ K 6= f . Then
ExtR(M,R(ℵ0)) 6= 0, a contradiction.
Hence, κ is finite, and M is projective (as R is regular). ¤
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Lemma 3.16. Let R be a von Neumann regular ring. Let N be a module and λ
be a cardinal of cofinality ω. Denote by πν the ν-th canonical projection of Mλ

to M , ν < λ. Let {λk; k < ℵ0} be a cofinal subset of λ. For each k < ℵ0 put
Mk = {m ∈ Mλ;πν(m) = 0∀ν ≥ λk}, and Mλ = ∪k<ℵ0Mk. Let J be a countably
generated right ideal of R. Then ExtR(R/J,Mλ/Mλ) = 0.

Proof. If J is finitely generated, then R/J is projective (as R is regular), and
the assertion is clear. If gen(J) = ℵ0, the regularity of R implies there is a set,
{en;n < ℵ0}, of orthogonal idempotents of R such that J = ⊕

∑

n<ℵ0
enR. We

have to extend each ϕ ∈ HomR(J,Mλ/Mλ) to some φ ∈ HomR(R,Mλ/Mλ). We
have ϕ(en) = (x

n
α.en;α < λ)+Nλ for some xn

α ∈ N , n < ℵ0, α < λ. For α < λ0, put
yα = 0. If λk ≤ α < λk+1, put yα =

∑

n≤k xn
α.en. Define φ ∈ HomR(R,Mλ/Mλ)

by φ(1) = (yα;α < λ). Since the idempotents en, n < ℵ0 are orthogonal, we have
φ ↾ J = ϕ. ¤

Proposition 3.17. Assume Ψ and CH. Let R be a von Neumann regular ring such
that each right ideal is countably generated and card(R) ≤ ℵ1. Let N be a module
such that gen(N) ≤ ℵ1. Assume that ExtR(M,N) = 0 implies M is projective, for
every finitely generated module M . Then N is a p-test module.

Proof. First, we use 3.16 for λ = ℵ0 and λn = n, n < ℵ0. Then Nλ = N (ℵ0).
Put I = Nℵ0/N (ℵ0). By Baer’s criterion and 3.16, I is injective. Denote by ν the
mapping assigning each x ∈ N the coset of the constant sequence (x; k < ℵ0). Then

ν is an embedding of N into I. Note that card(I) ≤ ℵℵ0
1 = (2

ℵ0)ℵ0 = ℵ1. So the
injective hull I(N) of N has cardinality at most ℵ1. Finally, the regularity of R
and 3.4 show that we can apply 3.12. ¤

Corollary 3.18. Assume Ψ and CH. Let R be a von Neumann regular ring such
that each right ideal is countably generated and card(R) ≤ ℵ1. Then each free
module of rank ≥ ℵ0 is p-test.

Proof. Since card(R) ≤ ℵ1, also card(I(R(ℵ0))) ≤ ℵ1, and we use 3.15. ¤

The main application of 3.17 is to the case when R is simple and of countable
dimension over its center:

Corollary 3.19. Assume Ψ and CH. Let R be a simple von Neumann regular ring
such that card(R) ≤ ℵ1 and dimK(R) ≤ ℵ0, K being the center of R. Let N be
a non-zero module such that N is either (i) countably generated, or (ii) projective,
or (iii) semisimple. Then N is a p-test module.

Proof. Part (i) follows from 3.2, 3.3 and 3.17. Parts (ii) and (iii) follow from the
fact that the respective modules possess non-zero cyclic summands. ¤

There is no analogue (in ZFC) to 3.13-9 for arbitrary non-right perfect rings:

Example 3.20. Let κ be an uncountable cardinal, K be a skew-field and M be
a right linear K-space of dimension κ over K. Let R be the ring of all linear
transformations of M . Then no module N with proj.dim(N) ≤ 1 is p-test. In
particular, no free module is p-test.

Proof. Let {bα;α < κ} be a basis of M . Define a system of idempotents {eα;α <
ℵ1} of R as follows: eα(bβ) = bβ provided β ≤ α, and eα(bβ) = 0 otherwise.
Define a chain of right ideals of R by I0 = 0, Iα+1 = eαR, α < ℵ1, and by
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Iα = ∪β<αIβ provided α is a limit ordinal < ℵ1. Then (Iα;α < ℵ1) is an ℵ1-
filtration of the right ideal I = ∪α<ℵ1Iα. Since R is von Neumann regular, Iα+1

is a summand in Iβ for all α < β < ℵ1. Hence, the set A = {α < ℵ1; {α < β <
ℵ1; Iβ/Iα is not projective } is stationary in ℵ1} contains all limit ordinals < ℵ1,
and A is a stationary subset of ℵ1. By Eklof’s lemma and Kaplansky’s structure
theorem for projective modules, I is a non-projective right ideal of R.
We prove that ExtR(R/I,R(λ)) = 0 for each cardinal λ. Let φ ∈ HomR(I,R(λ)).
For each α < ℵ1, denote by Fα the smallest finite subset of λ such that φ(eα) ∈
R(Fα). Then (Fα;α < ℵ1) is a non-decreasing chain of finite subsets of λ. Since
cf(ℵ1) > ω, we infer that F = ∪α<ℵ1Fα is a finite set, and Im(φ) ⊆ R(F ). Since R
is right self-injective, there is some ϕ ∈ HomR(R,R(F )) such that ϕ ↾ I = φ. Then
ExtR(R/I,R(λ)) = 0, and R(λ) is not p-test.
Finally, by 2.7, no module N with proj.dim(N) ≤ 1 is p-test. ¤

§4 Rings possessing many test modules

By §1, we know that there is a proper class of i-test modules over any ring R. This
suggests the question of how close can IT be to Mod-R. Obviously, IT =Mod-R
if and only if R is semisimple. If R is not semisimple, then no projective module
is i-test. Thus, investigating the possible size of IT , we start with the question
whether IT can contain all “small” non-projective modules.
Since similar observations apply to the dual case of the class PT , we arrive at

the following

Definition 4.1. Let R be a non-semisimple ring and κ be a cardinal. Then IT
(PT ) is said to be κ-saturated provided it contains all non-projective (non-injective)
modules M such that gen(M) ≤ κ. Moreover, IT (PT ) is fully saturated , or
maximal, provided it is κ-saturated for each κ.
Trivially, IT and PT are always 0-saturated. Also, κ-saturated implies κ′-

saturated for all κ′ ≤ κ. Moreover, IT is maximal iff IT =Mod-R \ P. Similarly,
PT is maximal iff PT = Mod-R \ I. Since each of these conditions is equivalent
to the assertion “ExtR(M,N) 6= 0 whenever M is non-projective and N is non-
injective”, the two maximality conditions are equivalent.

Most of this section deals with the structure of rings R such that IT is κ-
saturated for κ = 1, κ = ℵ0, and for all κ. Our results show that even the condition
of IT being 1-saturated imposes very strong restrictions on the structure of R.
That is, “almost” no R satifies this condition. By Baer’s criterion, this means that
for “almost” all rings R there exist right ideals I and J and a module N such that
J is not a summand of R, ExtR(R/I,N) 6= 0, but ExtR(R/J,N) = 0.

Our first result says that if IT contains all cyclic non-projective modules, then
R has no uncountably generated right ideals:

Theorem 4.2. Let R be a ring such that IT is 1-saturated. Then each right ideal
is countably generated. Moreover, either
(i) R is right noetherian (i.e. each right ideal is finitely generated), or
(ii) R is von Neumann regular.

Proof. (i) Assume R is not von Neumann regular. Then there is a principal right
ideal rR which is not a summand in R. Let (Iα;α < κ) be any system of injective
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modules. Put M = ⊕
∑

α<κ Iα. We show that M is injective. First, we prove
that ExtR(R/rR,M) = 0. Let φ ∈ HomR(rR,M). Then there is a finite set
F ⊆ κ such that Im(φ) ⊆ ⊕

∑

α∈F Iα = MF . Since MF is injective, there is some
ϕ ∈ HomR(R,MF ) such that ϕ ↾ rR = φ. Thus, ExtR(R/rR,M) = 0. Since R/rR
is an i-test module, M is injective. Hence, a direct sum of any system of injective
right modules is injective, and (i) holds.
(ii) Assume R is von Neumann regular, but not right noetherian. Then R is not
semisimple and there is an infinite set, {en;n < ℵ0}, of orthogonal idempotents in
R. Put J = ⊕

∑

n<ℵ0
enR and M = R/J . Then J is projective and M is a cyclic

non-projective module.
Let I be an injective module and K be a submodule of I. Put N = I/K. Since
the sequence 0 −→ J −→ R −→ M −→ 0 is exact, we have

0 = ExtR(J,K) −→ Ext2R(M,K) −→ Ext2R(R,K) = 0,

and Ext2R(M,K) = 0. Since the sequence 0 −→ K −→ I −→ N −→ 0 is exact, we have

0 = ExtR(M, I) −→ ExtR(M,N) −→ Ext2R(M,K) = 0,

and ExtR(M,N) = 0. As M is i-test, we infer that N = I/K is injective. This
proves that any factor module of an injective module is injective, and R is right
hereditary.
Now, we shall show that each right ideal is countably generated. On the contrary,
assume there is a right ideal I such that gen(I) > ℵ0. Since R is right hereditary,
I = ⊕

∑

α<κ xαR for an uncountable cardinal κ and some 0 6= xα ∈ R, α < κ. Put
J = ⊕

∑

α<ℵ0
xαR.

Let M be a non-injective module. Let H = HomR(I,M). Put λ0 = card(H), i.e.
H = {hβ ;β < λ0}. By induction, define λn+1 = λ+n , n < ℵ0. Put λ = supn<ℵ0λn.
Then λ has cofinality ω. By 3.16, ExtR(R/J,Mλ/Mλ) = 0. Since R/J is a cyclic
non-projective module,Mλ/Mλ is injective, and ExtR(R/I,Mλ/Mλ) = 0. For each
ν < λ, denote by πν the projection of M

λ onto M . Define f ∈ HomR(I,Mλ/Mλ)
by f(xα) = mα +Mλ, α < κ, where mα ∈ Mλ is defined by

πν(mα) = hν(xα) provided ν < λ0;
πν(mα) = hβ(xα) provided ν = λn + β, β < λ0, n < ℵ0;
πν(mα) = 0 otherwise.

Since ExtR(R/I,Mλ/Mλ) = 0, there is a g ∈ HomR(R,Mλ/Mλ) such that g ↾ I =
f . Hence, there is some y ∈ Mλ such that y.xα − mα ∈ Mλ, for all α < κ. For
n < ℵ0, put An = {α < κ; y.xα − mα ∈ Mn}. Then An ⊆ An+1 for all n < ℵ0,
and κ = ∪n<ℵ0An. Clearly, there is a p < ℵ0 such that card(Ap) > ℵ0. Then
πν(y.xα − mα) = 0 for all λp ≤ ν < λ and all α ∈ Ap.
Put K = ⊕

∑

α∈Ap
xαR. We shall prove that ExtR(R/K,M) = 0, i.e. that

any h ∈ HomR(K,M) extends into some h′ ∈ HomR(R,M). First, there is some
β < λ0 such that hβ ↾ K = h. Put ν0 = λp+β. Then h(xα) = πν0(mα) = πν0(y.xα)
for all α ∈ Ap. Define h′ ∈ HomR(R,M) by h′(1) = πν0(y). Then h′ ↾ K = h, and
ExtR(R/K,M) = 0. Since R/K is a cyclic non-projective module, we infer that
M is injective, a contradiction. ¤

We turn to the case when IT contains all countably generated non-projective
modules:
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Theorem 4.3. Let R be a ring such that IT is ℵ0-saturated. Then either
(i) R is right artinian, or
(ii) R is von Neumann regular and each right ideal of R is countably generated.

Proof. Assume that R is not von Neumann regular. Proving indirectly, we show
that R is right perfect: otherwise, there exist elements ai ∈ R, i < ℵ0, such that
(Rai . . . a0; i < ℵ0) is a strictly decreasing chain of principal left ideals of R. Let
1i, i < ℵ0 be the canonical basis of the free module F = R(ℵ0) and let G =
∑

i<ℵ0
(1i − 1i+1 · ai)R ⊆ F . Put M = F/G. By Bass’ lemma, M is a countably

generated flat module, but M is not projective. Since R is not von Neumann
regular, there exists a non-flat left R-module N . Let C be an injective cogenerator
for Mod-Z. Since TorR(M,N) = 0, we have ([CaEi,IV,Proposition 5.1])

ExtR(M,HomZ(N,C)) ≃ HomZ(TorR(M,N), C) = 0.

Since N is not flat in R-Mod and C is a cogenerator for Mod-Z, HomZ(N,C) is
not injective. Hence, M is not i-test, a contradiction. Therefore, R is right perfect
and right noetherian, by 4.2. Thus, R is right artinian, and (i) holds.
If R is von Neumann regular, then 4.2 gives (ii). ¤

Now, we pause to present the “rare” examples of rings possesing many test
modules. The first one is an artinian non-singular ring such that IT (and PT ) is
maximal.

Example 4.4. Let K be a skew-field. Denote by R = UT2(K) the ring of all upper
triangular 2 × 2 matrices over K. Then R is a (left and right) artinian and (left
and right) non-singular ring, and IT and PT are fully saturated.

Proof. R is well-known to be artinian and hereditary. Denote by e and f the
orthogonal idempotents of R such that e00 = f11 = 1, and all other entries in e
and f are zero. Then J0 = eR/Soc(eR) and J1 = fR are - upto isomorphism -
the only simple modules. Moreover, J0 is injective, and eR ≃ I(J1). Let M be any

module. There exist cardinals κ and λ such that Soc(M) ≃ J
(κ)
0 ⊕ J

(λ)
1 . Since J

(κ)
0

is injective, there are submodules N and P in M such that M = N ⊕ P , P ≃ J
(κ)
0

and Soc(N) ≃ J
(λ)
1 . Then I(N) ≃ (eR)(λ) is projective, and so is N . Since {e, f}

is a complete basic set of idempotents of R, there are cardinals µ and ν such that

N ≃ J
(µ)
1 ⊕ (eR)(ν). Hence, M is isomorphic to a direct sum of direct powers of

the modules J0, J1 and eR. If M is non-projective and non-injective, then the
direct power of J0, and of J1, respectively, is non-zero in this decomposition. Since
ExtR(J0, J1) 6= 0, the assertion holds true. ¤

Our second example is again a ring such that IT is maximal:

Example 4.5. Let R be a commutative local principal ideal ring. Then IT and
PT are fully saturated.

Proof. It is well-known that each module is a direct sum of cyclic modules, and the
ideals of R form a chain

0 = xmR ⊂ xm−1R ⊂ · · · ⊂ xR = Rad(R) ⊂ R,

where x is a generator of Rad(R) (see [FuS]). Since Soc(R) is simple, R is a QF-ring.
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Hence, we have to prove that ExtR(R/xiR,R/xjR) 6= 0 for all 0 < i, j < m.
Define f ∈ HomR(x

iR,R/xjR) by f(xi) = 1 + xjR provided i + j ≤ m, and by
f(xi) = xi+j−m+ xjR otherwise. Then f 6= g ↾ xiR, for all g ∈ HomR(R,R/xjR).
This proves that ExtR(R/xiR,R/xjR) 6= 0. ¤

The ring R from the previous example is an artinian valuation ring. Also noe-
therian valuation domains possess many i-test modules:

Example 4.6. Let R be a noetherian valuation domain which is not a field. Then
IT is n-saturated for each n < ℵ0, but it is not ℵ0-saturated.

Proof. Since R is an almost maximal valuation domain, each finitely generated
module is a direct sum of cyclic modules ([FuS]). Hence, it suffices to prove that
each cyclic non-projective module is i-test. By the premise, the ideals of R form a
chain

0 = ∩n<ℵ0x
nR ⊂ · · · ⊂ xn+1R ⊂ xnR ⊂ . . . x2R ⊂ xR = Rad(R) ⊂ R.

LetN be a module. Assume there is some 0 < n < ℵ0 such that ExtR(R/xnR,N) =
0. Since Ann(xn) = 0, each element of N is divisible by xn. Then each element
of N is divisible by xm and ExtR(R/xmR,N) = 0, for all 0 < m < ℵ0. By Baer’s
criterion, N is injective. Since R is not right artinian, the last assertion follows
from 4.3. ¤

Note that 4.6 shows that 4.2 and 4.3 apply to different classes of rings. Another
example of this fact is

Example 4.7. Let K be a universal differential field of characteristic 0 with dif-
ferentiation D (i.e. char(K) = 0; for each n < ℵ0, each polynomial equation in
indeterminates x0 = x, x1 = D(x), . . . , xn−1 = Dn−1(x) has a solution in K;
and each homogenous linear D-differential equation has a non-trivial solution in
K). Denote by R = K[y,D] the ring of all differential polynomials in one inde-
terminate y over K (i.e. the elements of R are polynomials from K[y] with usual
addition, and with multiplication given by the identity ya = ay + D(a) and its
consequences). Then IT is n-saturated for each n < ℵ0, but it is not ℵ0-saturated.

Proof. We shall need several well-known properties ofR (proved in [Fa1], [CzFa] and
[K]): first, R is a simple non-commutative principal right ideal domain. Moreover,
all simple modules are isomorphic to a simple module J , and J is injective. Let K
be a right ideal of R. Since R has a right division algorithm, R/K is a semisimple
module. Let Q be the right skew field of quotients of R. Then Q is an injective
module. Since R is right noetherian, each injective module is isomorphic to a direct
sum of copies of Q and J . In particular I(N)/N is isomorphic to a direct power of
J for each module N . If F is a finitely generated module with Soc(F ) = 0, then F
is flat, whence F is free.
Now, we prove that each finitely generated non-projective module F is i-test: As-
sume ExtR(F,M) = 0 for a module M . Note that F = Soc(F ) ⊕ G, where G is
finitely generated and Soc(G) = 0. Hence G is free, and Soc(F ) 6= 0. Similarly,
M = Soc(M)⊕ N , where Soc(N) = 0 and I(N) ≃ Q(κ) for a cardinal κ. W.l.o.g.,
we can assume that N 6= 0. We have ExtR(J,N) = 0 and HomR(J,Q(κ)) = 0.
Then also HomR(J, I(N)/N) = 0. Since I(N)/N is isomorphic to a direct power
of J , we infer that N = I(N).
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The last assertion is a consequence of 4.3. ¤

In fact, the proof of the last assertions of 4.6 and 4.7 is constructive. Taking the
moduleM = F/G as in the proof of 4.3, we obtain a particular countably generated
non-projective module which is not i-test.

Now, we proceed with the structure theory and show that the “rare” examples
of 4.4-4.7 are in a sense typical. First, we have

Lemma 4.8. Let R be a ring such that IT is 1-saturated. Then all non-projective
simple modules are isomorphic.

Proof. Let J be a non-projective simple module and N be a non-injective module.
By the premise, ExtR(J,N) 6= 0, and HomR(J, I(N)/N) 6= 0. Hence, the module
I(N)/N has a (transfinite) composition series with factors isomorphic to J . Since
N was arbitrary, all non-projective simple modules are isomorphic to J . ¤

The following theorem shows that we can restrict our investigation to indecom-
posable rings:

Theorem 4.9. Let κ be a cardinal. Let R be a ring such that IT is κ-saturated
(fully saturated). Then either
(i) R is an indecomposable ring; or
(ii) R = R′ ⊞ R′′, where R′′ is a semisimple ring and R′ is an indecomposable ring
such that the class of all i-test right R′-modules is κ-saturated (fully saturated).
On the other hand, if R = R′ ⊞ R′′ and R′, R′′ are as in (ii), then IT is

κ-saturated (fully saturated).

Proof. First, note that for any decomposition R′ ⊞ R′′ of the ring R, either R′ or
R′′ is semisimple. Indeed, taking any non-projective simple right R′-moduleM and
any non-injective right R′′-module N , we have ExtR(M,N) = 0, a contradiction.
Let B be a representative set of all projective simple modules (possibly, B = ∅).
Let J be a simple non-projective module. By 4.8, A = B ∪ {J} is a representative
set of all simple modules. Let C and D be two disjoint subsets of A. Denote by IC

and ID the trace of C and of D, respectively, in R. Then IC and ID are two-sided
ideals of R. Moreover, HomR(IC , ID) = 0, and ExtR(R/IC , ID) = 0. Hence, either
IC is a summand of R, or ID is injective (and a summand of R).
Assume C and D are two infinite disjoint subsets of A. Then neither IC nor ID is
finitely generated, a contradiction. Hence, A is finite. This implies that either R is
indecomposable, or R has a decomposition R = R′ ⊞ R′′, where R′′ is semisimple
and R′ is indecomposable. The final assertion follows from the fact that

ExtR(M,N) ≃ ExtR′(MR′, NR′)⊕ ExtR′′(MR′′, NR′′)

whenever M,N ∈ Mod-R. ¤

Proposition 4.10. Let R be an indecomposable ring such that IT is 1-saturated.
Clearly, either (I) all simple modules are isomorphic, or (II) there are at least
two non-isomorphic simple modules.
In the case (I), either
(Ia) R is isomorphic to a full matrix ring over a local right artinian ring,
or
(Ib) R is a simple ring such that each right ideal is countably generated,
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or
(Ic) R is right noetherian, right non-singular and non-right perfect,

and 0 = Soc(R) ⊂ Rad(R).
In the case (II), R is right semiartinian and right hereditary and, upto isomorphism,
there exist two simple modules J and P . Moreover, J is Σ-injective and non-
projective and P is projective.

Proof. Take a simple non-projective module J . If B is a representative set of all
non-projective modules, then A = B ∪ {J} is a representative set of all simple
modules by 4.8. For C ⊆ A, denote by IC the trace of C in R. We distinguish the
following cases:
(Ia) B = ∅ and IJ 6= 0. Then R is not von Neumann regular, and R is right

noetherian by 4.2. Since J embeds into R, we have Soc(R) = IJ 6= 0. Moreover,
if Soc(R/Soc(R)) = 0, then HomR(IJ , N) = 0 for any submodule N of R/Soc(R).
Hence, ExtR(R/IJ , N) = 0, N is injective, and R/Soc(R) is completely reducible, a
contradiction. Similarly, it follows thatR has a (finite) socle sequence, andR is right
artinian. This implies that R ≃ (eR)(n) for some n < ℵ0 and some indecomposable
idempotent e ∈ R. Then R ≃ HomR((eR)

(n), (eR)(n)) ≃ Mn(eRe), where eRe is a
local right artinian ring.
(Ib) B = ∅, IJ = 0 and Rad(R) = 0. Let I 6= R be a two-sided ideal of R. Let

M be a maximal right ideal containing I. Then J ≃ R/M and I.J = 0. Since
Rad(R) = 0, we have Ann(J) = 0 and I = 0. Hence, R is a simple ring.
(Ic) B = ∅, IJ = 0 and Rad(R) 6= 0. By 4.2, R is right noetherian. Also

Soc(R) = IJ = 0. Assume R is right perfect. Then R is right artinian and
Soc(R) = 0, a contradiction. Further, assume Sing(R) 6= 0. Take 0 6= r ∈
R such that K = Ann(r) E R. Then R/K ≃ rR is a submodule of I(K)/K.
Since ExtR(J,K) 6= 0, also HomR(J, I(K)/K) 6= 0, and I(K)/K has a transfinite
composition series with factors isomorphic to J . In particular, J embeds into
R/K ≃ rR ⊂ R, a contradiction. Hence, R is right non-singular.
(II) B 6= ∅. Then IB 6= 0. Since HomR(IB , IJ ) = 0 and R is indecomposable,

we infer that ExtR(R/IB , IJ ) = 0 and IJ = 0. Take P ∈ B and put C = B \ {P}.
Similarly, we get IC = 0, i.e. C = ∅ and A = {P, J}. Take a cardinal κ and consider
the module N = J (κ). Since HomR(IP , N) = 0, we have ExtR(R/IP , N) = 0, and
N is injective.
Let M be an arbitrary module. Denote by MP the trace of P in M . Let N be a
submodule of M/MP . Since HomR(IP , N) = 0 we have ExtR(R/IP , N) = 0, N is
injective and M/MP is semisimple. Hence, M/MP is isomorphic to a direct power
of J . In particular, R is right semiartinian.
Proving indirectly, assume R is not right hereditary. Then there are an injective
module I and a submodule K of I such that N = I/K is not injective. Put
M = R/IP . Since the sequence 0 −→ IP −→ R −→ M −→ 0 is exact and IP is
projective, we get 0 = ExtR(IP ,K) −→ Ext2R(M,K) −→ Ext2R(R,K) = 0, and
Ext2R(M,K) = 0. Since the sequence 0 −→ K −→ I −→ N −→ 0 is exact, we have
0 = ExtR(M, I) −→ ExtR(M,N) −→ Ext2R(M,K) = 0, and ExtR(M,N) = 0. Then
M is not i-test, a contradiction. ¤

Note that all the possibilities from 4.10 do occur: (Ia) in Example 4.5, (Ib) in
4.7, (Ic) in 4.6, and (II) in 4.4.

Using more involved arguments, we shall obtain a better characterization of rings
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of type (II). As a first step, we have

Lemma 4.11. Any ring of type (II) is right artinian.

Proof. Since R is right semiartinian and 4.2 holds, it suffices to prove that R is not
von Neumann regular. On the contrary, assume R is von Neumann regular. By
4.10(II), R/IP ≃ J (n) for some n < ℵ0. Hence, R̄ = R/IP is a simple artinian ring
and there is a complete set of orthogonal idempotents {ē0, . . . , ēn−1} ⊆ R̄ such that
ēiR̄ is a minimal right ideal of R̄ for all i < n. Since R is von Neumann regular,
this set can be lifted modulo IP into a complete set of orthogonal idempotents,
{e0, . . . , en−1}, of the ring R so that ei + IP = ēi for all i < n. Since R is not
semisimple, dim(Soc(R)) = dim(IP ) = κ for some κ ≥ ℵ0. Hence, Soc(R) =
⊕

∑

i<n Soc(eiR) and there is some e = ei such that dim(Soc(eR)) = κ. Since R is
von Neumann regular, there are a complete decomposition ⊕

∑

α<κ sαR of Soc(R)
and a subset A ⊆ κ such that
(1) 0 ∈ A, card(A) = κ,
(2) f = s0 is an idempotent of R such that efe = f ,
(3) Soc((e − f)R) = ⊕

∑

α∈A,α 6=0 sαR, and

(4) Soc((1− e)R) = ⊕
∑

α/∈A sαR.
By 4.10(II), Soc(R) E R and sαR ≃ P for all α < κ. Hence, there is a canonical
ring isomorphism φ : EndR(Soc(R)) ≃ CFMκ(K), where K = EndR(P ). Since
R is right non-singular, the canonical mapping ϕ : EndR(I(R)) → EndR(Soc(R))
defined by ϕ(x) = x ↾ Soc(R) is a ring isomorphism. Denote by Q the maximal
right quotient ring of R. Then Q = I(R) (as modules), and the canonical mapping
ψ : Q → EndR(I(R)) given by h(q)(1) = (1)q is a ring isomorphism.
W.l.o.g., we can view R as a submodule of Q. Moreover, since π = φϕψ is a ring
isomorphism, we can identify Q with CFMκ(K), whence R becomes a subring of
CFMκ(K). By (2), (3) and (4), m = π(e) is a matrix such that mαα = 1 provided
α ∈ A, and mαβ = 0 otherwise. If s ∈ Soc(R), then ψ(qs)(1) = (1)(qs) = ((1)q)s =
(s)q = s′ ∈ Soc(R), whence ψ(qs) = ψ(s′) for all q ∈ Q. Thus, Soc(R) is a left
ideal of the ring CFMκ(K). Moreover, if s ∈ Soc(R), s =

∑

α∈F sαrα for a finite
set F ⊂ κ, then π(s) is a matrix which is zero in any row indexed by α ∈ κ \ F .
Since π(s) is also column finite, it has only finitely many non-zero entries. Further,
by (2), (π(f))00 = 1 and (π(f))αβ = 0 otherwise. Define {fn, n < ℵ0} ⊂ Q by
f0 = f , and (fn)n0 = 1, (fn)αβ = 0 otherwise, for 0 < n < ℵ0. Since Soc(R) is a
left ideal of Q, we infer that fn ∈ Soc(R) for all n < ℵ0.
We shall construct a cyclic non-projective module M which is not i-test: Consider
the right ideal I = ⊕

∑

n<ℵ0,n even
(fn − fn+1)R. Since I is not finitely generated,

M = R/I is not projective.
It remains to construct a non-injective module N such that ExtR(M,N) = 0.
Let λ = card((eRe + Soc(R))/Soc(R)). Then (eRe + Soc(R))/Soc(R) = {rβ +

Soc(R), β < λ} for some rβ ∈ eRe, β < λ, and r0 = 0. Put L = Q(λ) and denote by

πβ , β < λ, the β-th projection of L onto Q. Note that Soc(L) = (Soc(R))(λ) E L E

I(L), and I(L)/Soc(L) is a completely reducible module. W.l.o.g., we shall view Q
as a submodule of L consisting of all l ∈ L such that πβ(l) = 0 for all 0 < β < λ.
Consider the matrix q ∈ Q defined by qi,i+1 = qi+1,i = 1 provided i < ℵ0, i even,
and by qαβ = 0 otherwise. Note that q = eqe and e + q /∈ Soc(R), as e + q has
infinitely many non-zero entries. Moreover, take r ∈ R such that (e+q)r ∈ Soc(R).
Then (e+ q)ere ∈ Soc(R). Assume (eRe)r 6⊆ Soc(R). Then (er′e)(ere) = e+ s, for
some r′ ∈ R and s ∈ Soc(R). Since ēR̄ē ≃ EndR̄(ēR̄) ≃ EndR(J) is a skew-field,
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also (ere)(er′e) = e+ s′ for some s′ ∈ Soc(R), whence e+ q = (e+ q)(erer′e− s′) ∈
Soc(R), a contradiction. This implies that there exists a maximal submodule N
of I(L) such that Soc(L) ⊆ N , e /∈ N , and qβ ∈ N for all 0 < β < λ. Here, qβ

denotes the element of L defined by π0(qβ) = rβ , πβ(rβ) = e+ q, and πβ′(rβ) = 0
otherwise. Since N 6= I(L) and Soc(L) E N E I(L), N is not injective.
Finally, let φ ∈ HomR(I,N). Then there is some x ∈ I(L) with xe(fn − fn+1) =
φ(fn − fn+1) for all n < ℵ0. Since N is a maximal submodule of I(L), we have
eR + N = I(L), and x = er + y for some r ∈ R and y ∈ N . Then ere = rβ for
some β < λ. If rβ 6= 0 (i.e. if β > 0), then rβ(fn − fn+1) = qβ(fn − fn+1), whence
(qβ − ye)(fn − fn+1) = xe(fn − fn+1) = φ(fn − fn+1). Define ϕ ∈ HomR(R,N) by
ϕ(1) = qβ + ye provided β > 0, and by ϕ(1) = ye otherwise. Then ϕ ↾ I = φ, and
ExtR(R/I,N) = 0. ¤

Now, we introduce a class of rings which plays a crucial role in characterizing
rings of type (II):

Definition 4.12. Let 0 < m < ℵ0. Let S and T be skew-fields such that T is a
subring of Mm(S). Denote by

− the mapping from Mm+1(S) to Mm(S) defined by
(a−)ij = aij for all a ∈ Mm+1(S) and i, j < m. Define R = UT (m,S, T ) as the
subring of Mm+1(S) consisting of all matrices a ∈ Mm+1(S) satisfying
(1) ami = 0 for all i < m, and
(2) a− ∈ T .

Note that the rings UT (m,S, T ) include the following important particular cases:
(1) upper triangular matrix rings of degree two over skew-fields (as UT (1,K,K) =
UT2(K) for any skew-field K);
(2) the rings UT (1, S, T ) where T is a skew field which is a proper subring of the
skew-field S (this example, in the particular case when S is a quadratic extension
of T , will be essential in §5);
(3) the rings UT (m,S, T ) for which m > 1, S is commutative, and the skew-field
T contains a copy of S (for example, if C is the field of all complex numbers, H the
skew-field of all quaternions and ϕ the canonical ring embedding of H into M2(C),
then UT (2, C, ϕ(H)) is a subring of M3(C)).

Basic properties of the rings UT (m,S, T ) can easily be described:

Lemma 4.13. Let R = UT (m,S, T ). For each i ≤ m, denote by ei the matrix
from R defined by (ei)im = 1 and (ei)jk = 0 otherwise. Put e = em, f = 1 − e,
P = eR and J = R/Soc(R).
(i) If I is a proper right ideal of R, then either I = fR or I ⊆ ⊕

∑

i≤m eiR.

(ii) Soc(R) = ⊕
∑

i≤m eiR and Rad(R) = ⊕
∑

i<m eiR.

(iii) The mapping ψ : R/Soc(R) → T defined by ψ(r + Soc(R)) = r− is a ring
isomorphism.
(iv) R is an indecomposable right hereditary right artinian basic ring. The set
{e, f} is a complete basic set of idempotents of R.
(v) {P, J} is a representative set of all simple modules. Moreover, P is projective,
but not injective, while J is

∑

-injective, but not projective.
(vi) I(R) = Mm+1(S), and the maximal right quotient ring of R is isomorphic to
Mm+1(S).

Proof. By easy matrix computations. ¤

As a further step of the characterization, we have
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Theorem 4.14. Any ring of type (II) is Morita equivalent to some UT (m,S, T ).

Proof. Let R be a ring of type (II). By 4.10(II), we have 0 ⊂ Rad(R) ⊂ Soc(R) =
IP , where P is (upto isomorphism) the only projective module. Moreover, by 4.11,
there is a complete orthogonal set, {e0, . . . , ek, e′0, . . . , e

′
l}, of primitive idempotents

of R such that P ∼= eiR for all i ≤ k and e′jR
∼= e′j′R for all j, j′ ≤ l. By 4.10(II),

Soc(R) ∼= P (n) for some k < n < ℵ0, and R/Soc(R) is a simple artinian ring.
Put S = EndR(P ). Then S is a skew-field. Let R′ be the basic ring of R. Since
R is Morita equivalent to R′, it suffices to show that R′ is ismorphic to some
UT (m,S, T ).

Clearly, R′ = (e+ f)R(e+ f), where e = e0 and f = e′0, and {e, f} is a basic set of
primitive idempotents of R′. Letm = dim(Soc(fR′)). The same argument as in the
proof of 4.10(II) shows that R′ is (canonically isomorphic to) a subring of the full
matrix ring Q = Mm+1(S) so that emm = 1, and ejj′ = 0 otherwise. Moreover, as
in the proof of 4.10(II), we see that Soc(R′) is a left ideal of Q. In particular, each of
the matrices xi, i ≤ m, defined by (xi)im = 1 and by (xi)jj′ = 0 otherwise, belongs
to R′. Put X = {q ∈ Q; qij = 0 for all i ≤ m and j < m}. Then X ⊆ Soc(R′).
Since f is a primitive idempotent, we have Rad(R′) = Rad(fR′) = Soc(fR′).
Hence, xi ∈ Rad(R′) for each i < m. Since Rad(R′).Soc(R′) ⊆ Rad(Soc(R′)) = 0,
we have X = Soc(R′). In particular, for each r ∈ R′ and each i < m, we have
xir ∈ Soc(R′), whence rmi = 0 for all i < m. If q ∈ Q, define q− ∈ Mm(S)
as in 4.12. Let T = {q−; q ∈ R}. Then T is a subring of Mm(S) such that
T ∼= R′/Soc(R′) ∼= fR′/Rad(fR′) is a skew-field. By 4.12, R′ ∼= UT (m,S, T ). ¤

The rings Morita equivalent to UT (m,S, T ) are completely characterized as cer-
tain block upper triangular matrix rings:

Theorem 4.15. Let R̄ = UT (m,S, T ). A ring R is Morita equivalent to R̄ if
and only if there are 0 < n < ℵ0 and 0 < p < ℵ0 such that R is isomorphic

to a subring of Mm.n+p(S) consisting of all matrices of the form
(

A B

0 C

)

, where

A ∈ Mn(T ) ⊆ Mm.n(S), B ∈ Mm.n×p(S) and C ∈ Mp(S).

Proof. By a direct matrix computation, using the fact that R is Morita equivalent
to R̄ iff there are 0 < q < ℵ0 and an idempotent matrix e ∈ Mq(R̄) such that
Mq(R̄)eMq(R̄) =Mq(R̄) and R ∼= eMq(R̄)e. ¤

In general, we do not know which of the matrix rings from 4.15 are of type (II).
Nevertheless, we have a complete answer for the most important cases of 4.12(1)-
(3).

First, recall that the property of IT being κ-saturated is preserved by adding a
semisimple ring to R (see 4.9). The following lemma shows that this property is
also preserved by Morita equivalence:

Lemma 4.16. Let λ be an infinite cardinal. Let R be a ring such that IT is κ-
saturated for all κ < λ (fully saturated). Let R̄ be Morita equivalent to R. Then
the class of all i-test right R̄-modules is κ-saturated for all κ < λ (fully saturated).

Proof. This follows from 4.1 and from the fact that the property “to be κ-generated”
is Morita invariant for each κ ≥ ℵ0. ¤

Putting together 4.4 and 4.16, we obtain an answer for the case 4.12(1):
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Example 4.17. Let S be a skew-field. Let R be a ring Morita equivalent to UT2(S).
Then R is isomorphic to the ring from 4.16, with m = 1 and T = S. Moreover, the
classes IT and PT are fully saturated. In particular, R is of type (II).

Now, we turn to the case 4.12(2):

Example 4.18. Let S and T be skew-fields such that T is a subring of S. Then
the ring R = UT (1, S, T ) is of type (II).

Proof. Let M be a cyclic non-projective module and let N be a module such that
ExtR(M,N) = 0. We shall prove that N is injective.

In view of 4.13(iv), w.l.o.g. we assume thatM is indecomposable and thatM has a
projective cover. By 4.13(i) and (ii), this implies that M ∼= fR/Rad(R) ∼= J . Put

r =
(

0 1

0 0

)

∈ R. Then rR = Rad(R). By 4.13(v), w.l.o.g. we assume that the trace

of J in N is 0. Hence, there is a cardinal κ > 0 such that

P (κ) ∼= {( 0 d ) ; d ∈ CFMκ×1(S)} = Soc(N) ⊆ N ⊆ I(N) =

= {( d′ d ) ; d, d′ ∈ CFMκ×1(S)}.

Take an arbitrary a ∈ CFMκ×1(S). Define ϕ ∈ HomR(Rad(R), N) by ϕ(r) =
( 0 a ). Since ExtR(M,N) = 0, ϕ extends to some φ ∈ HomR(fR,N), i.e. there is
some x ∈ N with xf = f and xr = ϕ(r). This implies that x = ( a 0 ). Since a was
arbitrary, we infer that that N = I(N), i.e. N is injective. ¤

On the other hand, the rings from 4.12(3) are never of type (II):

Proposition 4.19. Let R = UT (m,S, T ) and assume that m > 1, S is commuta-
tive and T contains a copy of S. Then there is a non-projective cyclic module M
which is not i-test.

Proof. We shall use the notation of 4.13. Put M = fR/rR, where r ∈ Rad(R) is
defined by r0m = 1, and rij = 0 otherwise. Since r ∈ Rad(fR),M is not projective.

Let X be a maximal right T -subspace of the right T -space Mm(S). Denote by NX

the submodule of Q =Mm+1(S) consisting of all matrices n ∈ Q such that n− ∈ X
and nmi = 0 for all i ≤ m. Then NX is a maximal submodule of the injective
module Q and Soc(NX) = Soc(Q). In particular, NX is not injective.

Put A =Mm×1(S) and take r′ ∈ A such that r′00 = 1, and r′i0 = 0 otherwise. First,
assume T.r′ = A. Take any maximal right T -subspace X of Mm(S) such that
T ⊆ X. Then any homomorphism from rR to NX extends to a homomorphism
from fR to NX , whence ExtR(M,NX) = 0. Now, assume B = T.r′ ⊂ A, i.e. B is a
proper left T -subspace of A. Since T contains a copy of S and S is commutative, B
is also a proper (left, right) S-subspace of A. Hence, there is some 0 6= y ∈ Mm(S)
with y.B = 0. Take a maximal right T -submodule X ofMm(S) such that X⊕yT =
Mm(S) in Mod-T . Then A =Mm(S).r

′ = (X ⊕ yT ).r′ = X.r′ + y.B = X.r′. This
implies that any homomorphism from rR to NX extends to a homomorphism from
fR to NX , and ExtR(M,NX) = 0. ¤

We sum up our results for the case when IT is 1-saturated. To simplify notation,
we shall write R = R′(⊞R′′) to denote that either R = R′ or R = R′ ⊞ R′′:
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Theorem 4.20. Let R be a ring such that IT is 1-saturated. Then R = R′(⊞R′′),
where R′′ is a semisimple ring and R′ is an indecomposable ring such that each
cyclic non-projective right R′-module is i-test. Moreover, either
(I) all simple right R′-modules are isomorphic and either
(Ia) R′ is isomorphic to a full matrix ring over a local right artinian ring, or
(Ib) R′ is a simple ring such that each right ideal is countably generated, or
(Ic) R′ is right noetherian, right non-singular and non-right perfect,

and 0 = Soc(R′) ⊂ Rad(R′),
or
(II) R′ is Morita equivalent to some UT (m,S, T ).

Proof. By 4.9, 4.10 and 4.14. ¤

Before proceeding with the structure of rings such that IT is ℵ0-saturated, we
consider the case of R = UT (m,S, T ):

Lemma 4.21. Let R = UT (m,S, T ). Then IT is 2-saturated if and only if m = 1
and T = S (i.e. if and only if R = UT2(S)).

Proof. The “if” part was proved in 4.4. For the “only if” part, assume that T 6=
Mm(S). We shall construct a non-projective 2-generated module M and a non-
injective module N such that ExtR(M,N) = 0.
We use the notation of 4.13. Since T 6=Mm(S), there is a basis, {bα;α < κ}, of the
right T -module Mm(S) such that b0 = 1 and κ > 1. Put M = (fR)(2)/gR, where
g = (g0, g1) ∈ Soc((fR)(2)) is such that (g0)im = (b0)i,m−1 and (g1)im = (b1)i,m−1

for all i < m. Since Soc(fR) = Rad(fR) << fR, also gR << (fR)(2). Hence, M
is a non-projective 2-generated module.
For each α < κ, take cα ∈ I(R)/Soc(R) such that cα = dα + Soc(R) for some
dα ∈ I(R) and (dα)

− = bα, d0 = 1. Put T̄ = R/Soc(R) and let σ = card(T̄ ),
i.e. T̄ = {tβ ;β < σ}. By 4.13(iii), T̄ ∼= T is a skew-field. Clearly, {cα;α < κ} is
a right T̄ -independent subset of I(R)/Soc(R). By 4.13(vi), there are some λ ≥ κ
and cα ∈ I(R)/Soc(R), κ ≤ α < λ, such that {cα;α < λ} is a right T̄ -basis of
I(R)/Soc(R).
Put I = I(R)(1+σ) = CFM(m+1)(1+σ)×(m+1)(S). We identify I(R) with the first

summand of I. By 4.13(ii), Soc(I) = Soc(R(1+σ)) consists exactly of those elements
of I whose i-th column is zero for each i < m. Moreover, Soc(I) E I, I/Soc(I)
is isomorphic to a direct power of J , and I/Soc(I) is a right T̄ -module. For each
γ < 1+σ, denote by νγ the γ-th canonical embedding of I(R)/Soc(R) into I/Soc(I).
Put A = {νγcα; 1 ≤ γ < 1 + σ, α < λ, α 6= 1} ∪ {ν0c0tβ + ν1+βc1;β < σ}. Then
A is a right T̄ -independent subset of I/Soc(I). In particular, there is a maximal
submodule N of I such that Soc(N) = Soc(I) ⊆ N ⊂ I, ν0c0 /∈ N/Soc(I) and
A ⊆ N/Soc(I). Since N E I and N 6= I, N is not injective. Note that ρ(N) ⊕
ρ(R) = I/Soc(I) in Mod-T̄ , ρ : I → I/Soc(I) being the projection.
We shall prove that ExtR(M,N) = 0. Denote by π : I → I/N the projection.
Then ExtR(M,N) ∼= HomR(M, I/N)/Im(HomR(M,π)). Take an arbitrary φ ∈
HomR(M, I/N). We have to find a ϕ ∈ HomR(M, I) such that φ = πϕ. Of course,
φ((f, 0) + gR) = x0 + N and φ((0, f) + gR) = x1 + N for some x0, x1 ∈ I such
that x0g0 + x1g1 ∈ Soc(N). By the choice of A and N , we have ρ(N) + ρ(N.d1) ⊇
ρ(R), whence N + N.d1 = I. In particular, there exist n0, n1 ∈ N such that
n0g0 + n1g1 = x0g0 + x1g1. Define ϕ ∈ HomR(M, I) by ϕ((f, 0) + gR) = x0 − n0
and ϕ((0, f)+gR) = x1−n1. Then πϕ = φ. This proves that ExtR(M,N) = 0. ¤
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Theorem 4.22. Let R be a ring such that IT is ℵ0-saturated. Then R = R′(⊞R′′),
where R′′ is a semisimple ring and R′ is an indecomposable ring such that each
countably generated non-projective right R′-module is i-test. Moreover, either
(Ia) R′ is isomorphic to a full matrix ring over a local right artinian ring, or
(Ib) R′ is a simple von Neumann regular ring such that all right ideals are count-

ably generated and all simple right R′-modules are isomorphic, or
(II) R′ is Morita equivalent to UT2(S) for a skew-field S.

Proof. By 4.3, 4.16, 4.20 and 4.21. ¤

Corollary 4.23. Let R be a right non-singular ring such that R is not von Neu-
mann regular. Then the following conditions are equivalent:
(i) IT is ℵ0-saturated,
(ii) IT is fully saturated,
(iii) PT is fully saturated,
(iv) R = R′(⊞R′′), where R′′ is a semisimple ring and there is a skew-field S such
that R′ is Morita equivalent to UT2(S).

Though 4.22-3 provide a complete characterization in the type (II) case, the type
(I) case is still open. For example, so far, no examples of von Neumann regular
rings satisfying the condition (Ib) are known. There are surely no examples of size
less than continuum:

Proposition 4.24. Let R be a simple von Neumann regular ring with card(R) <
2ℵ0 . Then there are uncountably many non-isomorphic simple modules.

Proof. First, we define a 2-branching tree (T,<) of height ω as follows: T =
∪n<ℵ0Tn, where Tn is the n-th level of T and Tn consists of a complete set of
orthogonal idempotents of R defined by induction as follows: T0 = {1}; if e ∈ Tn,
then ReR = R, i.e. the rings eRe and R are Morita equivalent, whence there are
orthogonal idempotents fe, ge ∈ R such that fe 6= e 6= ge and e = fe + ge, and we
put Tn+1 = ∪e∈Tn

{fe, ge}. Since Tn is a complete set of idempotents, so is Tn+1.
If n < ℵ0, e ∈ Tn and e′ ∈ Tn+1, we define e ≺ e′ iff either e′ = fe or e′ = ge.
Now, < is defined as the transitive closure of ≺ on T . Denote by B the set of all
branches of T . Clearly, card(B) = 2ℵ0 . For each b ∈ B, define a right ideal Ib of
R by Ib =

∑

e∈(T\b) eR. Then Ib 6= R, and there is a maximal right ideal Jb of R

such that Ib ⊆ Jb.
Let M be a simple module. Put BM = {b ∈ B;R/Jb

∼= M}. Since R is a simple
ring, the Jacobson density theorem implies that we can view R as a subring of
EndK(M), where K = EndR(M) is a skew-field. SinceM is isomorphic to a factor
module of R, also card(M) < 2ℵ0 and dimK(M) < 2ℵ0 . Let b ∈ BM . Then
HomR(R/Jb,M) 6= 0 and there is some 0 6= mb ∈ M such that mbIb = 0.
We shall prove that the set UM = {mb; b ∈ BM} is a K-independent subset of M .
On the contrary, let {mbi

; i < n} be a K-dependent subset of Ub having a minimal
cardinality, n > 1. Then

∑

i<n kimbi
= 0 for some 0 6= ki, i < n. Since all the

branches bi, i < n, are different, there is some e ∈ b0 \ ∪0<i<nbi. Take p < ℵ0 such
that e ∈ Tp. Since Tp is complete, 1− e is a sum of some elements of T \ b0. Then
0 =

∑

i<n kimbi
(1− e) =

∑

0<i<n kimbi
, in contradiction with the minimality of n.

Finally, denote by S a representative set of all simple modules. Clearly, B =
∪M∈SBM . Since card(BM ) ≤ dimK(M) < 2ℵ0 for each M ∈ S, we infer that
card(S) ≥ cf(2ℵ0) > ℵ0. ¤
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Corollary 4.25. Let R be a right non-singular ring such that card(R) < 2ℵ0 .
Then the conditions (i) - (iv) of 4.23 are equivalent.

By 4.5, artinian valuation rings provide examples of rings of type (Ia). In fact,
the description of type (Ia) gets closer to the valuation ring case if we assume that
IT is maximal. To see this, we generalize a result of Bongartz ([B] and [H]):

Lemma 4.26. Let R be a ring and A and B be modules. Assume ExtR(B,B(κ)) =
0 for all cardinals κ. Then there are a cardinal λ and a module C such that
ExtR(B,C) = 0 and there is an exact sequence

0→ A → C → B(λ) → 0.

Proof. Take a cardinal λ and extensions

(*) 0→ A → Eα → B → 0, α < λ,

so that these extensions generate the group ExtR(B,A). Let

(**) 0 −→ A −→ C
π
−→ B(λ) −→ 0

be the extension obtained by pushing out the direct sum extension

0→ A(λ) → ⊕
∑

α<λ

Eα → B(λ) → 0

along φ ∈ HomR(A
(λ), A) defined by φ((aα;α < λ)) =

∑

α<λ aα. Consider the
long exact sequence

0 −→ HomR(B,A) −→ HomR(B,C) −→ HomR(B,B(λ))
δ
−→ ExtR(B,A) −→

−→ ExtR(B,C)
ExtR(B,π)
−−−−−−−→ ExtR(B,B(λ)) = 0 −→ . . .

induced by (**) and by the functor HomR(B,−). Since the extensions (*) gen-
erate ExtR(B,A), the connecting Z-homomorphism δ is onto. Hence, the Z-
homomorphism ExtR(B, π) is a monomorphism. This proves that ExtR(B,C) =
0. ¤

Lemma 4.27. Let R be a right noetherian ring such that R is not right hereditary.
Assume IT is κ-saturated, for all κ < ℵ0 and all κ ≤ gen(M), M being any
indecomposable injective module. Then R is a QF-ring.

Proof. Let B be an indecomposable injective module. Since R is right noetherian,
we have ExtR(B,B(κ)) = 0 for all cardinals κ. Let A be a non-injective module.
By 4.26, there are a cardinal λ and a module C such that ExtR(B,C) = 0 and
there is an extension

(***) 0→ A → C → B(λ) → 0.

Assume C is injective. Since R is right noetherian, but not right hereditary, there
is a non-projective finitely generated right ideal I of R. Applying the functor
HomR(R/I,−) to the exact sequence (***), we get

0 = ExtR(R/I,B(λ))→ Ext2R(R/I,A)→ Ext2R(R/I,C) = 0,



26 JAN TRLIFAJ

whence Ext2R(R/I,A) = 0. Applying the functor HomR(−, A) to the exact se-
quence 0→ I → R → R/I → 0, we get

0 = ExtR(R,A)→ ExtR(I,A)→ Ext2R(R/I,A) = 0.

Since gen(I) < ℵ0, A is injective, a contradiction.
Thus, C is not injective. Since ExtR(B,C) = 0, our premise implies that B is
projective.
This proves that any injective module is projective, and R is a QF-ring by a theorem
of Faith and Walker ([AF]). ¤

Theorem 4.28. Let R be a ring such that IT is fully saturated. Then R =
R′(⊞R′′), where R′′ is a semisimple ring and R′ is an indecomposable ring such
that each non-projective right R′-module is i-test. Moreover, either
(Ia) R′ is isomorphic to a full matrix ring over a local QF-ring, or
(Ib) R′ is a simple von Neumann regular ring such that all right ideals are count-

ably generated and all simple right R′-modules are isomorphic, or
(II) R′ is Morita equivalent to UT2(S) for a skew-field S.

Proof. By 4.22 and 4.27. ¤

So far, all results of this section were proved in ZFC. We finish by showing that
4.28 can be improved in the models of ZFC satisfying the Shelah’s uniformization
principle UP (see 2.3):

Lemma 4.29. Let κ be a cardinal such that cf (κ) = ℵ0. Assume UPκ. Let R be
a non-right perfect ring such that card(R) < κ. Then PT is not 1-saturated, and
IT is not κ+-saturated.

Proof. Since R is not semisimple, [Os, Corollary 2.23] implies that there exists a
cyclic non-injective module, N . Clearly, card(N) ≤ card(R) < κ. By 2.2 and 2.4,
there is a non-projective module M such that gen(M) ≤ κ+ and ExtR(M,N) = 0.
Hence, N is not p-test, and M is not i-test. ¤

Theorem 4.30. Assume UP. Let R be a ring such that IT is fully saturated. Then
R = R′(⊞R′′), where R′′ is a semisimple ring and either
(I) R′ is isomorphic to a full matrix ring over a local QF-ring, or
(II) R′ is Morita equivalent to UT2(S) for a skew-field S.

Proof. By 4.28 and 4.29. ¤

Corollary 4.31. Assume UP. Let R be a right non-singular ring. Then the fol-
lowing conditions are equivalent:
(i) IT is fully saturated,
(ii) PT is fully saturated,
(iii) R = R′(⊞R′′), where R′′ is a semisimple ring and there is a skew-field S such
that R′ is Morita equivalent to UT2(S).

§5 Applications: a solution to Menini’s problem

In the present section, we apply results of §4 to solve a problem (due to C.Menini)
concerning representable equivalences of module categories. First, we recall the
categorial background of the problem:
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There are several important generalizations of the celebrated Morita theorem
concerning equivalence of module categories. In most of them, there is a repre-
senting module inducing an equivalence of module subcategories. In this way, the
notion of a quasi-progenerator was introduced by K.R.Fuller ([F]). Also the (gen-
eral) tilting modules appear in this context, as shown in [CbF].
There is a class of modules comprising both quasi-progenerators and tilting mod-

ules: A module P ∈ Mod-R is a ∗-module provided P induces (via HomR(P,−)
and −⊗R′P ) an equivalence between Gen(PR) and Cog(P ∗

R′), where R′ = End(PR)
and P ∗ = HomR(P,Q) for an injective cogenerator Q ∈ Mod-R. Here, Gen(MR)
and Cog(MR) denote the category of all modules generated and cogenerated, re-
spectively, by M .
The study of ∗-modules is motivated by the following representation theorem of

Menini and Orsatti ([MeO]): if B and C are equivalent categories, where B ⊆ Mod-
R′ is such that R′ ∈ B and B is closed under submodules, and C ⊆ Mod-R is
closed under direct sums and factors, then there is a unique ∗-module P such that
C = Gen(PR), B = Cog(P ∗

R′), and P induces the equivalence between B and C.
The class of all ∗-modules is denoted by STAR .
So far, there is no explicit description of the class STAR over an arbitrary

associative ring with unit. Nevertheless, by a result of the author, all ∗-modules
are finitely generated ([T2]). Moreover, there is a general criterion due to R.Colpi:
a finitely generated module P is in STAR if and only if P satisfies the condition
C(κ) for all cardinals κ. Here, C(κ) denotes the Colpi’s condition for κ, i.e. the
assertion:
“for every submodule M of P (κ), the condition M ∈ Gen(PR) is equivalent to the
injectivity of the canonical group homomorphism ExtR(P,M)→ ExtR(P, P (κ))”.
Clearly, C(0) always holds, and it is easy to see that C(κ) implies C(κ′) for all
κ′ ≤ κ.
If λ > 0 is a cardinal and P a module, then P is said to be a ∗λ-module provided

P is finitely generated and P satisfies C(κ) for all κ < λ. The class of all ∗λ-
modules is denoted by Sλ. In particular S1 = FG, the class of all finitely generated
modules. Moreover, ∗ℵ0 -modules are called almost ∗-modules. The class of all
almost ∗-modules is denoted by ASTAR. Thus, we have the following decreasing
chain of subclasses of Mod-R:

FG = S1 ⊇ S2 ⊇ · · · ⊇ ASTAR = Sℵ0 ⊇ Sℵ1 ⊇ . . .

· · · ⊇ Sλ ⊇ Sλ+ ⊇ · · · ⊇ ∩λSλ = STAR,(♣)

where Sλ = ∩κ<λSκ provided λ = ℵα and either α = 0 or α is a limit ordinal.
A possible approach to ∗-modules is by studying the class STAR “from above”,

i.e. by means of investigations of the particular classes Sλ and the categorical equiv-
alences induced by their elements. An important feature of each ∗λ-module (dis-
covered by R.Colpi) is that it induces an equivalence between certain natural sub-
categories of Gen(PR) and Cog(P ∗

S), depending on λ.
Of course, a question arises whether the hierarchy of the classes Sλ can be

simplified, i.e. whether the inclusions of Sλ+ into Sλ in (♣) are strict. An essential
simplification would follow from a positive solution to the following problem of
C.Menini:

“Does STAR = ASTAR hold (for an arbitrary ring) ?”
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Nevertheless, the answer to this question is negative: we shall show that for
each infinite cardinal λ there exist a hereditary artinian ring R and a 2-generated
∗λ-module P such that C(λ) does not hold. Hence, in this case, the inclusion of
Sλ+ into Sλ in (♣) is strict. Moreover, this means that for each λ ≥ ℵ0, the Colpi’s
condition C(λ) is independent of “C(κ) for all κ < λ”.
Our construction of P is based on Cohn-Schofield solution of Artin’s problem

for skew-field extensions: We start with a quadratic extension S of a skew field
T constructed by Cohn and such that dimT S = λ. Then we take the ring R =

UT (1, S, T ) (see 4.12 - 4.14) and prove that the module P = {
(

a b

0 0

)

; a, b ∈ S} ⊂

M2(S) is the suitable one. The first step of the proof uses a transfer lemma which
expresses the vanishing of ExtR(P,−) in terms of a non-commutative linear algebra
assertion over T . Then C(κ) is shown to hold for all κ < λ provided the right
dimension of T over a certain sub-skew-field is λ. The final step consists in an
analysis of the original Cohn’s construction.

First, we fix our notation for the rest of this section:

Definition 5.1. Let T and S be skew-fields such that S is a quadratic extension
of T (i.e. T ⊂ S and dimST = 2). Fix an element x ∈ S \ T . Moreover, put
R = UT (1, S, T ), i.e. let R be the subring of M2(S) consisting of all matrices of

the form
(

a b

0 c

)

, where a ∈ T and b, c ∈ S. Further, denote by P the module

{
(

a b

0 0

)

; a, b ∈ S} ⊂ M2(S).

Lemma 5.2. For each t ∈ T there are unique φ(t),D(t) ∈ T such that

tx = xφ(t) +D(t).

The mapping φ : T → T is an injective ring homomorphism, D : T → T is a
φ-differentiation of T, and dimφ(T )T = dimT S − 1.

Proof. Well-known. ¤

Lemma 5.3. R is left and right artinian, and left and right hereditary. Upto
isomorphism, the modules P and R/Soc(R) are the only indecomposable injective
modules in Mod-R, the first one being 2-generated and the second being simple.
For each M ∈ Mod-R there are a decomposition M ≃ D(M)⊕R(M) and a unique
cardinal κM such that D(M) is the trace of R/Soc(R) in M and

Soc(P (κM )) = Soc(R(M)) E R(M) E P (κM ).

Proof. Easy, using 4.13. ¤

The following lemma transfers vanishing of ExtR(P,−) into a linear algebraic
assertion over T :

Lemma 5.4. Define YM = {(aα)α<κM
∈ S(κM );

(

aα 0

0 0

)

α<κM

∈ R(M)} for each

M ∈ Mod-R. Then YM is a right T -submodule of S(κM ). Moreover, the following
conditions are equivalent:
(i) ExtR(P,M) = 0,
(ii) YM + YM .x = S(κM ) (as abelian groups).
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Proof. Since R(M) is a submodule of P (κM ), we see that YM is a right T -submodule
of S(κM ). In view of 5.3, w.l.o.g. we can assume that D(M) = 0, i.e. Soc(P (κ)) =

Soc(M) E M E P (κ), where κ = κM . Put p0 =
(

1 0

0 0

)

∈ P , p1 =
(

x 0

0 0

)

∈ P , q =

(
(

0 x

0 0

)

,
(

0 −1

0 0

)

) ∈ R(2), q0 = (
(

0 0

0 1

)

,
(

0 0

0 0

)

) ∈ R(2) and q1 = (
(

0 0

0 0

)

,
(

0 0

0 1

)

) ∈

R(2). Clearly, P = p0R + p1R and P ≃ R(2)/(qR ⊕ q0R ⊕ q1R). Since AnnR(q) =

{
(

a b

0 0

)

; a ∈ T, b ∈ S}, the elements of HomR(qR,M) are in one-one correspon-

dence with the elements of Soc(M) = Soc(P (κ)) = {
(

0 bα

0 0

)

α<κ
; (bα)α<κ ∈ S(κ)}.

Similarly, HomR(q0R ⊕ q1R,M) ≃ (Soc(M))(2). Of course, HomR(R
(2),M) ≃

M (2). Then ExtR(P,M) = 0 iff the canonical homomorphism HomR(R
(2),M) →

HomR(qR,M) induced by restriction is onto iff for each
(

0 bα

0 0

)

α<κ
with (bα)α<κ ∈

S(κ) and all
(

0 ci
α

0 0

)

α<κ
with (ci

α)α<κ ∈ S(κ), i = 0, 1, there are some
(

ai
α bi

α

0 0

)

α<κ
,

with (ai
α)α<κ ∈ YM and (bi

α)α<κ ∈ S(κ), i = 0, 1, and such that bi
α = ci

α for
i = 0, 1 and a0α.x − a1α = bα, for all α < κ. The last assertion is equivalent to
YM + YM .x = S(κ). ¤

Note that for any cardinal κ > 0 and any right T -submodule Y of S(κ) there is
some M ∈ Mod-R such that Y = YM and κ = κM . Moreover, M is injective iff
YM = S(κM ).

Lemma 5.5. Let κ > 0 be a cardinal and M a submodule of P (κ). Then κM ≤ κ
and
(i) M ∈ Gen(PR) iff there is a cardinal γ ≤ κ such that M ≃ P (γ) is a summand
of P (κ),
(ii) the canonical group homomorphism ExtR(P,M) → ExtR(P, P (κ)) is injective
iff YM + YM .x = S(κM ) (as abelian groups).

Proof. (i) By 5.3, if M ∈ Gen(PR), then M is an injective submodule of P (κ).
Hence, M ≃ P (γ) for some γ ≤ κ.
(ii) By 5.3, ExtR(P, P (κ)) = 0, and the result follows from 5.4. ¤

Lemma 5.6. Put δ = dimTφ(T ).
(i) If κ is a cardinal such that δ ≤ κ, then C(κ) does not hold.
(ii) If δ ≥ ℵ0, then C(κ) holds for all κ < δ.
(iii) If δ < ℵ0 and n < ℵ0 is such that 2n ≤ δ, then C(n) holds.

Proof. Let κ be a cardinal. By 5.3 and 5.5, C(κ) is equivalent to the assertion
”Y + Y x 6= S(κ) for all proper right T -submodules Y of S(κ)”. For each α < κ, let
πα : S

(κ) → S be the α-th projection. Let B = {1α;α < κ} be the canonical basis
of the right S-module S(κ). For α < κ let xα = 1αx. Clearly, B ∪ {xα;α < κ} is a
basis of the right T -module S(κ).
(i): Assume δ ≤ κ. Let {tν ; ν < δ} be a right φ(T )-basis of T . Let Y be

a right T -submodule of S(κ) generated by B ∪ {yα;α < κ}, where π0(yν) = xtν
for all ν < δ, πα+1(yα) = x for all α < κ, and πβ(yα) = 0 otherwise. Since

x0 /∈ Y , Y is a proper submodule of S(κ). By 5.2, T ⊕ Tx = T ⊕ x.φ(T ), whence
⊕

∑

α<κ xαφ(T ) ⊆ Y + Y x. Thus,

x0T = ⊕
∑

ν<δ

x0tνφ(T ) ⊆ Y + Y x,
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and Y + Y x = S(κ). Therefore, C(κ) does not hold.
(ii) and (iii): Take 0 < κ < δ such that 2κ ≤ δ provided δ < ℵ0. Proving

indirectly, assume that C(κ) does not hold. Then there is a maximal right T -
submodule Y of S(κ) such that Y + Y x = S(κ). Let D = {dα;α < λ} be a right
T -basis of Y . Since dimST = 2, we have λ = 2κ− 1 provided κ is finite, and λ = κ
otherwise. By 5.2, T ⊕ Tx = T ⊕ x.φ(T ), whence

S(κ) = Y + Y x =
∑

α<λ

dα(T ⊕ Tx) =
∑

α<λ

dα(T ⊕ x.φ(T )) = Y +
∑

α<λ

dα.x.φ(T ).

In particular, dim(S(κ)/Y )φ(T ) = dimTφ(T ) = δ ≤ λ, a contradiction. ¤

The following theorem provides a negative answer to Menini’s question:

Theorem 5.7. Let λ be an infinite cardinal and K, L be the skew-fields constructed
by Cohn for α = λ and β = 2. Then L is a quadratic extension of K and dimKL =

λ . Put S = L, T = K, and let P = {
(

a b

0 0

)

; a, b ∈ S}. Then P is a 2-generated

module, C(κ) holds for all κ < λ, but C(κ′) does not hold for any κ′ ≥ λ.

Proof. By 5.3, P is 2-generated. In view of 5.6(i) and (ii), it suffices to show that
dimTφ(T ) = λ. To this aim, we analyze the construction of Cohn ([Co, pp.124-126]),
using partly the notation thereof: We have φ(K) ⊆ Eµ(t) and, by [Co, pp.125-126],
xµ11 /∈ Eµ(t), for all µ < α. Since xν11 ∈ Eµ(t) for all ν 6= µ < α, the set
{xµ11;µ < α} is not only a left, but also a right φ(K)-independent subset of K.
Since card(K) = card(L) = α, the assertion follows. ¤

Theorem 5.7 implies that, in general, ∗-modules cannot easily be reached “from
above”, using ∗λ-modules and their hierarchy (♣). On the other hand, there are
many particular cases in which ∗-modules can be reached “from below”, using
quasi-progenerators or tilting modules. For example, ∗-modules over commutative
rings are exactly the quasi-progenerators (by [CMe] and [T2]). ∗-modules over
finite dimensional algebras coincide with those modules that are tilting modulo
their annihilators (a result of [CMe] and [DH]).

Open Problems

(1) In 1.6, we have proved in ZFC that PT is a proper class for any right perfect
ring R. If R is not right perfect, then 2.5 shows that it is consistent with ZFC that
PT is empty. On the other hand, if R is right hereditary, then it is consistent with
ZFC that PT is a proper class (see 3.13).
What is the possible size of PT in the case when R is non-right perfect and non-right
hereditary ? Is then the assertion of 2.5 a theorem of ZFC ? The problem is open
even in the very particular case of full endomorphism rings of infinite dimensional
linear spaces over skew-fields (cp. 2.6 and 3.20).
(2) By 4.14, all rings of type (II) are Morita equivalent to some UT (m,S, T ).

Moreover, 4.15 provides a description using block upper triangular matrix rings.
Which of these matrix rings really are of type (II) ? For partial answers, see 4.17-
19.
(3) By 4.28, each ring R of type (Ia) such that IT is maximal is isomorphic to

a full matrix ring over a local QF-ring R′. Is R′ actually an artinian valuation ring
(as in 4.5) ?
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(4) By 5.7, for each λ ≥ ℵ0, there is an artinian hereditary ring R such that
Sλ+ ⊂ Sλ. Is the same true for each 0 < λ < ℵ0 ? In particular, can the methods
of §5 be used also in this case, replacing the Cohn’s quadratic extensions T ⊂ S by
the ones constructed by Schofield ([Sc]) ?
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