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Introduction

Module theory provides a general framework for the study of linear repre-
sentations of various mathematical objects. For example, given a field K,
representations of a quiver Q may be viewed as modules over the path al-
gebra 〈KQ〉. Similarly, representations of a group G coincide with modules
over the group algebra KG; representations of a Lie algebra L are modules
over the universal enveloping algebra U(L) etc.

In general, there is little hope to describe all modules over a given ring,
or algebra, R. Unless R is of finite representation type, that is, unless each
module is a direct sum of indecomposable ones, we have to restrict our
study to particular classes of modules. Once we understand the structure
of a class, C, we may try to approximate arbitrary modules by the modules
from C.

Since the early 1960’s, this approach has successfully been used to in-
vestigate injective envelopes, projective covers as well as pure-injective en-
velopes of modules, [2], [48]. An independent research of Auslander, Reiten
and Smalø in the finite dimensional case, and Enochs and Xu for arbitrary
modules, has led to a general theory of left and right approximations – or
preenvelopes and precovers – of modules, [7], [8], [26] and [50].

The notions of a preenvelope and a precover are dual in the category
theoretic sense. In the late 1970’s, Salce noticed that these notions are also
tied up by a homological notion of a complete cotorsion theory [42]. The
point is that though there is no duality between the categories of all modules,
complete cotorsion theories make it possible to produce preenvelopes once
we know precovers exist and vice versa.

In a recent work, Eklof and the author proved that complete cotorsion
theories are abundant. For example, any cotorsion theory cogenerated by
a set of modules is complete, [22]. Consequently, many classical cotorsion
theories are complete. In this way, Enochs proved that the flat cotorsion the-
ory is complete, thus proving the celebrated Flat Cover Conjecture (FCC):
every module over any ring has a flat cover [9]. Similarly, the author proved
that all modules have torsion-free covers [45].

In the finite dimensional case, Auslander and Reiten studied approxima-
tions of modules induced by tilting and cotilting modules [7]. This theory
has recently been extended to arbitrary modules [4], [5], [19]. For exam-
ple, it turned out that a torsion class of modules T provides for special
preenvelopes if and only if T is generated by a tilting module. Here, tilt-
ing modules are allowed to be infinitely generated: in fact, all non-trivial
examples for R = Z (or when R is a small Dedekind domain) are infinitely
generated, [23], [32], [47].

The lecture notes are divided into four chapters accompanied by a list
of open problems and references.
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In Chapter 1, we present basics of the general theory of approximations
and cotorsion theories of modules as developed by Enochs and Salce.

In Chapter 2, we prove that complete cotorsion theories are abundant,
following the recent works of Eklof and the author, [22], [23].

Chapter 3 consists of applications. We construct various particular ap-
proximations of modules over arbitrary rings. We prove the FCC, as well
as existence of torsion-free covers and of cotorsion envelopes in the sense of
Enochs, Warfield and Matlis. We also construct approximations by modules
of finite homological dimensions in the spirit of [1].

In Chapter 4, we relate the approximation theory to tilting and cotilting
theory of (infinitely generated) modules, following recent works of Angeleri-
Hügel, Colpi, Tonolo and the author, [5], [19] and [45].

Some of the results presented in the lecture notes can be extended to
more general categories - in particular, to Grothendieck categories, cf. [14],
[24], [27], [34], [41], [46]. Nevertheless, our setting is that of modules over
associative unital rings. Namely, together with developing the general ap-
proximation theory we aim at applications to the structure of particular
classes of modules. Covers and envelopes are unique, so they provide for
invariants of modules similar to the Bass numbers or dual Bass numbers in
the sense of [50, Chap. 5]. It is the study of these invariants that appears
to be one of the challenging tasks for future research in module theory.

The importance of each of the numerous envelopes, covers and cotorsion
theories depends very much on the ring in case. We will illustrate this
throughout the text in the case of domains, in particular the Prüfer and the
Dedekind ones. For example, if R is a Prüfer domain then the complete
cotorsion theory (P1,DI) plays an important role: several classical results
of Fuchs and Salce [29] can be proved, and generalized, by applying the
approximation theory to this case. This will be shown in Chapter 4.

Salce’s result on envelopes and covers induced by complete cotorsion
theories provides also for a new insight in some of the classical results. For
example, Enochs’ theorem on the existence of torsion-free covers of modules
over domains [25] implies the existence of Warfield’s cotorsion hulls [29,
XII.4] and vice versa, a fact by no means evident from the classical proofs.

R will always denote an (associative unital) ring. For a ring R, we
denote by Mod-R the category of all (unitary right R-) modules. Let S
be a commutative ring such that R is an S-algebra. Let E be an injective
cogenerator of Mod-S and N be a left R-module. Then N is an R, S-
bimodule. Put N∗ = HomS(N,E). If M ∼= N∗ as S, R-bimodules then M
is called a dual module (of N). Similarly, we define the R, S-bimodule N∗∗.

In the particular case when S = Z, E = Q/Z, the dual module N∗ =
HomZ(N,Q/Z) is called the character module of N and denoted by N c. If R
is a k-algebra over a field k then any finite k-dimensional module M is dual
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(since M ∼= M∗∗ where S = E = k). If R is commutative then the choice
of S = R and E an injective cogenerator of Mod-R provides for another
instance of a dual module.

For a module M denote by Gen(M) the class of all modules generated by
M , that is, of all homomorphic images of arbitrary direct sums of copies of
M . Let Pres(M) be the class of all modules presented by M , so Pres(M) =
{N ∈ Mod-R | ∃K ∈ Gen(M)∃κ : N ∼= M (κ)/K}. Denote by Add(M) the
class of all direct summands of arbitrary direct sums of copies of M .

Dually, we define the classes of all modules cogenerated and copresented
by M , Cogen(M) and Copres(M), and the class Prod(M) of all direct sum-
mands of arbitrary direct products of copies of M .

Denote by Q the maximal quotient ring of R. If R is a (commutative
integral) domain then Q coincides with the quotient field of R.

Let R be a ring, I be a right ideal of R, and M be a module. Then M
is I-divisible provided that Ext1R(R/I,M) = 0. If I = rR for some r ∈ R
then the term r-divisible will also be used to denote I-divisibility. Following
Lam [38, 3.16], we call M divisible if M is r-divisible for all r ∈ R. Denote
by DI the class of all divisible modules.

Let I be a left ideal of R. A module M is I-torsion-free provided that
TorR1 (M,R/I) = 0. If I = Rr for some r ∈ R then the term r-torsion-free
will also be used to denote I-torsion-freeness. M is torsion-free if M is r-
torsion-free for all r ∈ R. The class of all torsion-free modules is denoted by
T F .

If r ∈ R with Annr(r) = 0 then M is r-divisible iff Mr = M . Similarly,
if Annl(r) = 0 then M is r-torsion-free iff mr = 0 implies m = 0 for all
m ∈ M . In particular, these characterizations hold true for any non-zero
r ∈ R in the case when R is a domain.

Denote by Pn (In) the class of all modules of projective (injective) di-
mension ≤ n, and by FL the class of all flat modules. Then P0 ⊆ FL ⊆ T F
and I0 ⊆ DI for any ring R.

A submodule A of a module B is pure (A ⊆∗ B, for short) if for each
finitely presented module F , the functor Hom(F,−) preserves exactness of
the sequence 0 → A → B → B/A → 0. Modules that are injective with
respect to pure embeddings are called pure-injective. The class of all pure-
injective modules is denoted by PI. For example, any dual module is pure
injective. In fact, a module M is pure-injective iff M is a direct summand
in a dual module, cf. [36], [50].

A ring R is right coherent provided that each finitely generated right ideal
is finitely presented. For example, any Prüfer domain is right coherent.

For further preliminaries on general rings and modules, we refer to [2],
and for modules over domains to [29]. We will also need several well-known
facts from homological algebra: the existence of the long exact sequence for
ExtnR, the fact that Ext1R(M,N) = 0 iff each extension of N by M splits,
and the Ext1 - Tor1 relations of [12, VI.5].

4



1 Approximations of modules

We start with introducing the basic notions of the approximation theory in
the setting of module categories.

Definition 1.1 Let M be a module and C be a class of modules closed
under isomorphic images and direct summands.

A map f ∈ HomR(M,C) with C ∈ C is called a C-preenvelope of M
provided that the abelian group homomorphism HomR(f, C ′) is surjective
for each C ′ ∈ C. That is, for each homomorphism f ′ : M → C ′ there is a
homomorphism g : C → C ′ such that f ′ = gf :

M
f

−−−−→ C
∥

∥

∥

g





y

M
f ′

−−−−→ C ′

The C-preenvelope f is a C-envelope of M if g is an automorphism when-
ever g ∈ HomR(C,C) and f = gf .

Example 1.2 For a module M , denote by E(M) and PE(M) the injective
and pure-injective hulls of M . Then the embedding M →֒ E(M) is an
I0-envelope of M , and M →֒ PE(M) is a PI-envelope of M .

Clearly, a C-envelope of M is unique in the following sense: if f : M →
C and f ′ : M → C ′ are C-envelopes of M then there is an isomorphism
g : C → C ′ such that f ′ = gf .

In general, a module M may have many non-isomorphic C-preenvelopes,
but no C-envelope (see Chapter 4). Nevertheless, if the C-envelope exists,
it is recognized as the minimal C-preenvelope in the sense of the following
lemma:

Lemma 1.3 Let f : M → C be a C-envelope and f ′ : M → C ′ a C-
preenvelope of a module M . Then

1. C ′ = D⊕D′, where Im f ′ ⊆ D and f ′ : M → D is a C-envelope of M ;

2. f ′ is a C-envelope of M iff C ′ has no proper direct summands contain-
ing Im f ′.

Proof. 1. By definition, there are homomorphisms g : C → C ′ and
g′ : C ′ → C such that f ′ = gf and g′g is an automorphism of C. So
D = Im g ∼= C is a direct summand in C ′ containing Im f ′, and the assertion
follows.

2. By part 1.
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Definition 1.4 A class C ⊆ Mod-R is a preenvelope class (envelope class)
provided that each module has a C-preenvelope (C-envelope).

For example, the classes I0 and PI from Example 1.2 are envelope classes
of modules.

Now, we briefly discuss the dual concepts:

Definition 1.5 Let C ⊆ Mod-R be closed under isomorphic images and
direct summands. Let M ∈ Mod-R. Then f ∈ HomR(C,M) with C ∈
C is a C-precover of M provided that the abelian group homomorphism
HomR(C ′, f) : HomR(C ′, C) → HomR(C ′,M) is surjective for each C ′ ∈ C.

A C-precover f ∈ HomR(C,M) of M is called a C-cover of M provided
that fg = f and g ∈ End(CR) implies that g is an automorphism of C.

C ⊆ Mod-R is a precover class (cover class) provided that each module
has a C-precover (C-cover). 1

Example 1.6 Each module M has a P0-precover. Moreover, M has a P0-
cover iff M has a projective cover in the sense of Bass [2, §26]. So P0 is
always a precover class, and it is a cover class iff R is a right perfect ring.

C-covers may not exist in general, but if they exist, they are unique up
to isomorphism. As in Lemma 1.3, we get

Lemma 1.7 Let f : C → M be the C-cover of M . Let f ′ : C ′ → M be any
C-precover of M . Then

1. C ′ = D ⊕D′, where D ⊆ Ker f ′ and f ′ ↾ D′ is a C-cover of M ;

2. f ′ is a C-cover of M iff C ′ has no non-zero direct summands contained
in Ker f ′.

Proof. Dual to the proof of Lemma 1.3.

Wakamatsu proved that under rather weak assuptions on the class C,
C-envelopes and C-covers are special in the sense of the following definition:

Definition 1.8 Let C ⊆ Mod-R. Define

C⊥ = KerExt1R(C,−) = {N ∈ Mod-R | Ext1R(C,N) = 0 for all C ∈ C}

1
C-preenvelopes and C-precovers are sometimes referred to as left and right C-

approximations; preenvelope and precover classes are then called covariantly finite and
contravariantly finite, respectively, cf. [7] and [8].
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⊥C = KerExt1R(−, C) = {N ∈ Mod-R | Ext1R(N,C) = 0 for all C ∈ C}.

If C = {C} then we simply write C⊥ and ⊥C.
Let M ∈ Mod-R. A C-preenvelope f : M → C of M is called special

provided that f is injective and Coker f ∈ ⊥C. In other words, there is an
exact sequence

0 −→M
f
−→ C −→ D −→ 0

with C ∈ C and D ∈ ⊥C.
Dually, a C-precover f : C → M of M is called special if f is surjective

and Ker f ∈ C⊥.

Lemma 1.9 Let M be a module. Let C be a class of modules closed under
extensions.

1. Assume I0 ⊆ C. Let f : M → C be a C-envelope of M . Then f is
special.

2. Assume P0 ⊆ C. Let f : C →M be a C-cover of M . Then f is special.

Proof. 1. By assumption, M →֒ E(M) factors through f , hence f is
injective. So there is an exact sequence

0 −→M
f
−→ C

g
−→ D −→ 0.

In order to prove that D ∈ ⊥C, we take an arbitrary extension

0 −→ C ′ −→ X
h
−→ D −→ 0.

We will prove that h splits. First, consider the pullback of g and h:

0 0




y





y

C ′ C ′





y





y

0 −−−−→ M
α

−−−−→ P
β

−−−−→ X −−−−→ 0
∥

∥

∥

γ





y
h





y

0 −−−−→ M
f

−−−−→ C
g

−−−−→ D −−−−→ 0




y





y

0 0
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Since C,C ′ ∈ C, also P ∈ C by assumption. Since f is a C-envelope of
M , there is a homomorphism δ : C → P with α = δf . Then f = γα = γδf ,
so γδ is an automorphism of C.

Define i : D → X by i(g(c)) = βδ(γδ)−1(c). This is correct, since
δ(γδ)−1f(m) = δf(m) = α(m). Moreover, hig = hβδ(γδ)−1 = gγδ(γδ)−1 =
g, so hi = idD and h splits.

2. Dual to 1.

Another reason for investigating special preenvelopes and precovers con-
sists in their close relation to cotorsion theories:

Definition 1.10 Let A,B ⊆ Mod-R. The pair (A,B) is called a cotorsion
theory if A = ⊥B and B = A⊥.

If C is any class of modules, then

GC = (⊥C, (⊥C)⊥)

and

CC = (⊥(C⊥), C⊥)

are easily seen to be cotorsion theories, called the cotorsion theory gen-
erated and cogenerated, respectively, by the class C.

If C = (A,B) is a cotorsion theory then the class KC = A ∩ B is called
the kernel of C. Note that each element K of the kernel is a splitter in the
sense of [30], i.e., Ext1R(K,K) = 0.

For any ring R, the cotorsion theories of right R-modules are partially
ordered by inclusion of their first components. In fact, they form a complete
“lattice” LExt. In general, the support of LExt is a proper class [31] and L
is not modular [43].

The largest element of L is GMod-R = (Mod-R, I0), the least CMod-R =
(P0,Mod-R) - these are called the trivial cotorsion theories.

Cotorsion theories are analogs of the classical torsion theories where
Hom is replaced by Ext. Similarly, one can define F -torsion theories for any
additive bifunctor F on Mod-R.

The case when F is the Tor bifunctor is of particular interest for us. For
a class of (right resp. left) R-modules, C, we put

C⊺ = KerTorR1 (C,−) = {N ∈ R-Mod | TorR1 (C,N) = 0 for all C ∈ C},

resp.

⊺C = KerTorR1 (−, C) = {N ∈ Mod-R | TorR1 (N,C) = 0 for all C ∈ C}.
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(A,B) is called a Tor-torsion theory if A = ⊺B and B = A⊺.
Also Tor-torsion theories form a complete “lattice”, LTor, with the least

element (FL,Mod-R) and the largest (Mod-R,FL).

Lemma 1.11 Let R be a ring and (A,B) be a Tor-torsion theory. Then
C = (A,A⊥) is a cotorsion theory. Moreover, C = GC where C = {Bc | B ∈
B} ⊆ PI.

Proof. The statement follows from the canonical isomorphism

Ext1R(A,HomZ(B,Q/Z)) ∼= HomZ(TorR1 (A,B),Q/Z)

which holds for any A ∈ Mod-R and B ∈ R-Mod, [12, VI.5.1].

Lemma 1.11 implies that there is a canonical order preserving embedding
of LTor into LExt. In fact, the embedding is a lower “semilattice” one [43].

Definition 1.12 Consider the case of Lemma 1.11 when A = FL and
B = Mod-R. Then (FL, EC) is a cotorsion theory, the so called flat cotorsion

theory. Here, EC
def
= FL⊥ denotes the class of all Enochs cotorsion mod-

ules, [50]. By Lemma 1.11, any dual module, and hence any pure-injective
module, is Enochs cotorsion. So PI ⊆ EC.

Another case of interest is when A = T F . Then T F = ⊺S where
S = {R/Rr | r ∈ R}. By Lemma 1.11, (T F ,WC) is a cotorsion theory, the

so called torsion-free cotorsion theory. Here, WC
def
= T F⊥ denotes the class

of all Warfield cotorsion modules, [29, XII.3].

Clearly, P0 ⊆ FL ⊆ T F , so I0 ⊆ WC ⊆ EC for any ring R.

Rather than looking at the structure of the lattice LExt we will be inter-
ested in aproximations induced by cotorsion theories. The basic fact is due
to Salce [42]:

Lemma 1.13 Let R be a ring and C = (A,B) be a cotorsion theory of
modules. Then the following are equivalent:

1. Each module has a special A-precover;

2. Each module has a special B-preenvelope.

In this case, the cotorsion theory C is called complete.

Proof.

1. implies 2.: Let M ∈ Mod-R. There is an exact sequence

0 −→M −→ I
π
−→ F −→ 0
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where I is injective. By assumption, there is a special A-precover, ρ, of F

0 −→ B −→ A
ρ
−→ F −→ 0.

Consider the pullback of π and ρ:

0 0




y





y

M M




y





y

0 −−−−→ B −−−−→ P −−−−→ I −−−−→ 0
∥

∥

∥

γ





y

π





y

0 −−−−→ B −−−−→ A
ρ

−−−−→ F −−−−→ 0




y





y

0 0

Since B, I ∈ B, also P ∈ B. So the left-side vertical exact sequence is a
special B-preenvelope of M .

2. implies 1.: By a dual argument.

In Chapter 2, we will see that “almost all” cotorsion theories are com-
plete, so they induce approximations of modules. In order to prove existence
of minimal approximations, we will need the following version of a result due
to Enochs and Xu [50]

Theorem 1.14 Let R be a ring and M be a module. Let C be a class of
modules closed under extensions and arbitrary direct limits. Assume that
M has a special C⊥-preenvelope, ν, with Coker ν ∈ C. Then M has a C⊥-
envelope.

Proof. 1. By an ad hoc notation, we will call an exact sequence 0 −→
M −→ F −→ C −→ 0 with C ∈ C an Ext-generator provided that for each
exact sequence 0 −→ M −→ F ′ −→ C ′ −→ 0 with C ′ ∈ C there exist f ∈
HomR(F ′, F ) and g ∈ HomR(C ′, C) such that the resulting diagram

0 −−−−→ M −−−−→ F ′ −−−−→ C ′ −−−−→ 0
∥

∥

∥

f





y

g





y

0 −−−−→ M −−−−→ F −−−−→ C −−−−→ 0

is commutative. By assumption, there exists an Ext-generator with the
middle term F ∈ C⊥. The proof is divided into three steps:
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Lemma 1.15 Assume 0 −→M −→ F −→ C −→ 0 is an Ext-generator. Then
there exists an Ext-generator 0 −→M −→ F ′ −→ C ′ −→ 0 and a commutative
diagram

0 −−−−→ M −−−−→ F −−−−→ C −−−−→ 0
∥

∥

∥

f





y

g





y

0 −−−−→ M −−−−→ F ′ −−−−→ C ′ −−−−→ 0

such that Ker(f) = Ker(f ′f) in any commutative diagram whose rows
are Ext-generators:

0 −−−−→ M −−−−→ F −−−−→ C −−−−→ 0
∥

∥

∥

f





y

g





y

0 −−−−→ M −−−−→ F ′ −−−−→ C ′ −−−−→ 0
∥

∥

∥

f ′




y

g′




y

0 −−−−→ M −−−−→ F ′′ −−−−→ C ′′ −−−−→ 0

Proof. Assume the assertion is not true. By induction, we will construct
a directed system of Ext-generators indexed by ordinals as follows:

First, let the second row be the same as the first one, that is, put F ′ =
F0 = F , C ′ = C0 = C, f = idF and g = idC . Then there exist F1 = F ′′,
C1 = C ′′, f01 = f ′ and g01 = g′ such that the diagram above commutes, its
rows are Ext-generators and Ker f10 ) Ker f = 0.

Assume the Ext-generator 0 −→ M −→ Fα −→ Cα −→ 0 is defined to-
gether with fβα ∈ HomR(Fβ , Fα) and gβα ∈ HomR(Cβ , Cα), for all β ≤ α.
Then there exist Fα+1, Cα+1 ∈ C, fα,α+1 and gα,α+1 such that the diagram

0 −−−−→ M −−−−→ Fα −−−−→ Cα −−−−→ 0
∥

∥

∥

fα,α+1





y

gα,α+1





y

0 −−−−→ M −−−−→ Fα+1 −−−−→ Cα+1 −−−−→ 0

commutes, its rows are Ext-generators and Ker f0,α+1 ) Ker f0α, where
fβ,α+1 = fα,α+1fβα and gβ,α+1 = gα,α+1gβα for all β ≤ α.

If α is a limit ordinal, put Fα = lim
−→β<α

Fβ and Cα = lim
−→β<α

Cβ . Con-

sider the direct limit 0 −→ M −→ Fα −→ Cα −→ 0 of the Ext-generators
0 −→ M −→ Fβ −→ Cβ −→ 0, (β < α). Since C is closed under direct limits,
we have Cα ∈ C. Since 0 −→ M −→ Fβ −→ Cβ −→ 0 is an Ext-generator for
(some) β < α, also 0 −→M −→ Fα −→ Cα −→ 0 is an Ext-generator.

Put fβα = lim
−→β≤β′<α

fββ′ and gβα = lim
−→β≤β′<α

gββ′ for all β < α. Then

Ker(f0α) ⊇ Ker(f0β), and hence Ker(f0α) ) Ker(f0β), for all β < α.
By induction, we obtain for each ordinal α a strictly increasing chain,

(Ker f0β | β < α), consisting of submodules of F , a contradiction.
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Lemma 1.16 Assume 0 −→M −→ F −→ C −→ 0 is an Ext-generator. Then
there exists an Ext-generator 0 −→M −→ F ′ −→ C ′ −→ 0 and a commutative
diagram

0 −−−−→ M −−−−→ F −−−−→ C −−−−→ 0
∥

∥

∥

f





y

g





y

0 −−−−→ M −−−−→ F ′ −−−−→ C ′ −−−−→ 0

such that Ker(f ′) = 0 in any commutative diagram whose rows are Ext-
generators:

0 −−−−→ M −−−−→ F ′ −−−−→ C ′ −−−−→ 0
∥

∥

∥

f ′




y

g′




y

0 −−−−→ M −−−−→ F ′′ −−−−→ C ′′ −−−−→ 0

Proof. By induction on n < ω, we infer from Lemma 1.15 that there is a
countable directed system, D, of Ext-generators 0 −→M −→ Fn −→ Cn −→ 0
with homomorphisms fn,n+1 ∈ HomR(Fn, Fn+1), gn,n+1 ∈ HomR(Cn, Cn+1),
such that the 0-th term of D is the given Ext-generator 0 −→ M −→ F −→
C −→ 0,

0 −−−−→ M −−−−→ Fn −−−−→ Cn −−−−→ 0
∥

∥

∥

fn,n+1





y

gn,n+1





y

0 −−−−→ M −−−−→ Fn+1 −−−−→ Cn+1 −−−−→ 0

is commutative, and for each commutative diagram whose rows are Ext-
generators

0 −−−−→ M −−−−→ Fn+1 −−−−→ Cn+1 −−−−→ 0
∥

∥

∥

f̄





y

ḡ





y

0 −−−−→ M −−−−→ F̄ −−−−→ C̄ −−−−→ 0

we have Ker(fn,n+1) = Ker(f̄fn,n+1).
Consider the direct limit 0 −→ M −→ F ′ −→ C ′ −→ 0 of D, so F ′ =

lim
−→n<ω

Fn and C ′ = lim
−→n<ω

Cn. Since C is closed under direct limits, we

have C ′ ∈ C, and 0 −→M −→ F ′ −→ C ′ −→ 0 is an Ext-generator. It is easy
to check that this generator has the required injectivity property.

Lemma 1.17 Let 0 −→ M
ν
−→ F ′ π

−→ C ′ −→ 0 be the Ext-generator con-
structed in Lemma 1.16. Then ν : M → F ′ is a C⊥-envelope of M .

Proof. First, we prove that that in each commutative diagram

12



0 −−−−→ M −−−−→ F ′ −−−−→ C ′ −−−−→ 0
∥

∥

∥

f ′




y

g′




y

0 −−−−→ M −−−−→ F ′ −−−−→ C ′ −−−−→ 0

f ′ is an automorphism.
Assume this is not true. By induction, we construct a directed system

of Ext-generators, 0 −→ M −→ Fα −→ Cα −→ 0, indexed by ordinals, with
injective, but not surjective, homomorphisms fβα ∈ HomR(Fβ , Fα) (β < α).
In view of Lemma 1.16, we take

0 −→M −→ Fα −→ Cα −→ 0 = 0 −→M
ν
−→ F ′ π

−→ C ′ −→ 0

in case α = 0 or α non-limit, and Fα = lim
−→

Fβ and Cα = lim
−→

Cβ if α is a
limit ordinal. Then for each non-limit ordinal α, (Im gβα | β non-limit, β <
α) is a strictly increasing sequence of submodules of F ′, a contradiction.

In remains to prove that F ′ ∈ C⊥. Consider an exact sequence 0 −→
F ′ µ

−→ X −→ C −→ 0 where C ∈ C. We will prove that this sequence splits.
Consider the pushout of π and µ:

0 0




y





y

0 −−−−→ M
ν

−−−−→ F ′ π
−−−−→ C ′ −−−−→ 0

∥

∥

∥

µ





y





y

0 −−−−→ M −−−−→ X −−−−→ P −−−−→ 0




y





y

C C




y





y

0 0

Since C is closed under extensions, we have P ∈ C. Since 0 −→ M
ν
−→

F ′ π
−→ C ′ −→ 0 is an Ext-generator, we have also a commutative diagram

0 −−−−→ M −−−−→ X −−−−→ P −−−−→ 0
∥

∥

∥

µ′




y





y

0 −−−−→ M
ν

−−−−→ F ′ π
−−−−→ C ′ −−−−→ 0

By the first part of the proof, µ′µ is an automorphism of F ′. It follows
that 0 −→ F ′ µ

−→ X −→ C −→ 0 splits.
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Theorem 1.18 Let R be a ring, M be a module, and C be a class of modules
closed under arbitrary direct limits. Assume that M has a C-precover. Then
M has a C-cover.

Proof. The proof is by a construction of precovers with additional in-
jectivity properties, in three steps analogous to Lemmas 1.15 - 1.17, cf. [50,
§2.2] or [26].

Theorem 1.18 is not the strongest result available: for example, El Bashir
has recently extended it to Grothendieck categories. Moreover, he proved
that C is a cover class whenever C is a class of objects in a Grothendieck
category G such that C is closed under arbitrary coproducts and directed
colimits and there is a set of objects S ⊆ C such that each object of C is a
directed colimit of objects from S, [24].

Corollary 1.19 Let C = (A,B) be a complete cotorsion theory such that A
is closed under arbitrary direct limits. Then A is a cover class and B is an
envelope class.

Proof. By Theorems 1.14 and 1.18.

2 Complete cotorsion theories

In this chapter, we will prove that complete cotorsion theories are abundant:
any cotorsion theory cogenerated by a set of modules is complete, and so
is any cotorsion theory generated by a class of pure-injective modules. In
Chapter 3, we will apply these results to prove existence of various sorts of
envelopes and covers of modules over arbitrary rings.

We start with a homological lemma. Let κ be an infinite cardinal. A
chain of modules, (Mα | α < κ), is called continuous provided that Mα ⊆
Mα+1 for all α < κ and Mα = ∪β<αMβ for all limit ordinals α < κ.

Lemma 2.1 Let N be a module. Let (Mα | α < κ) be a continuous chain
of modules. Put M = ∪α<κMα.

Assume that Ext1R(M0, N) = 0 and Ext1R(Mα+1/Mα, N) = 0 for all
α < κ. Then Ext1R(M,N) = 0.

Proof. Put Mκ = M . By induction on α ≤ κ, we will prove that
Ext1R(Mα, N) = 0. By assumption, this is true for α = 0.

The exact sequence 0 = Ext1R(Mα+1/Mα, N) → Ext1R(Mα+1, N) →
Ext1R(Mα, N) = 0 proves the induction step.

Assume α < κ is a limit ordinal. Let 0 −→ N −→ I
π
−→ I/N −→

0 be an exact sequence with I an injective module. In order to prove
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that Ext1R(Mα, N) = 0, we show that the abelian group homomorphism
HomR(Mα, π) : HomR(Mα, I) → HomR(Mα, I/N) is surjective.

Let ϕ ∈ HomR(Mα, I/N). By induction, we define homomorphisms
ψβ ∈ HomR(Mβ , I/N), β < α, so that ϕ ↾ Mβ = πψβ and ψβ ↾ Mγ = ψγ for
all γ < β < α.

First, define M−1 = 0 and ψ−1 = 0. If ψβ is already defined, the
injectivity of I yields the existence of η ∈ HomR(Mβ+1, I) such that η ↾

Mβ = ψβ . Put δ = ϕ ↾ Mβ+1 − πη ∈ HomR(Mβ+1, I/N). Then δ ↾ Mβ =
0. Since Ext1R(Mβ+1/Mβ, N) = 0, there is ǫ ∈ HomR(Mβ+1, I) such that
ǫ ↾ Mβ = 0 and πǫ = δ. Put ψβ+1 = η + ǫ. Then ψβ+1 ↾ Mβ = ψβ and
πψβ+1 = πη + δ = ϕ ↾ Mβ+1. For a limit ordinal β < α, put ψβ = ∪γ<βψγ

Finally, put ψα = ∪β<αψβ. By the construction, πψα = ϕ.
The claim is just the case of α = κ.

The next theorem is crucial. It was originally proved in [22] which in
turn generalized a particular construction for torsion-free abelian groups
[30]. The proof given here is a more categorical modification of the original
proof, cf. [1]:

Theorem 2.2 Let S be a set of modules.

1. Let M be a module. Then there is a short exact sequence 0 → M →֒
P → N → 0 where P ∈ S⊥ and P is the union of a continuous chain
of submodules, (Pα | α < λ), such that P0 = M and Pα+1/Pα is
isomorphic to a direct sum of copies of elements of S for each α < λ.

In particular, M →֒ P is a special S⊥-preenvelope of M .

2. The cotorsion theory CS = (⊥(S⊥),S⊥) is complete.

.
Proof. 1. Put X = ⊕S∈SS. Then X⊥ = S⊥. So w.l.o.g., we assume

that S consists of a single module S.
Let 0 −→ K

µ
−→ F −→ S −→ 0 be a short exact sequence with F a free

module. Let λ be an infinite regular cardinal such that K is < λ-generated.
By induction, we define the chain (Pα | α < λ) as follows:
First P0 = M . For α < λ, define µα as the direct sum of HomR(K,Pα)-

many copies of µ, so

µα =
⊕

µ ∈ HomR(K(HomR(K,Pα)), F (HomR(K,Pα))).

Then µα is a monomorphism and Cokerµα is isomorphic to a direct
sum of copies of S. Let ϕα ∈ HomR(K(HomR(K,Pα)), Pα) be the canonical
morphism. Note that for each η ∈ HomR(K,Pα), there exist canonical em-
beddings νη ∈ HomR(K,K(HomR(K,Pα))) and ν ′η ∈ HomR(F, F (HomR(K,Pα)))
such that η = ϕανη and ν ′ηµ = µανη.
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Now, Pα+1 is defined via the pushout of µα and ϕα:

K(HomR(K,Mα)) µα
−−−−→ P (HomR(K,Mα))

ϕα





y

ψα





y

Pα
⊆

−−−−→ Pα+1

If α ≤ λ is a limit ordinal, we put Pα = ∪β<αPβ , so the chain is contin-
uous. Put P = ∪α<λPα.

We will prove that ν : M →֒ P is a special S⊥-preenvelope of M .
First, we prove that P ∈ S⊥. Since F is projective, we are left to show

that any ϕ ∈ HomR(K,P ) factors through µ:
SinceK is< λ-generated, there are an index α < λ and η ∈ HomR(K,Pα)

such that ϕ(k) = η(k) for all k ∈ K. The pushout square gives ψαµα =
σαϕα, where σα denotes the inclusion of Pα into Pα+1. Altogether, we
have ψαν

′
ηµ = ψαµανη = σαϕανη = σαη. It follows that ϕ = ψ′µ where

ψ′ ∈ HomR(F, P ) is defined by ψ′(f) = ψαν
′
η(f) for all f ∈ F . This proves

that P ∈ S⊥.
It remains to prove that N = P/M ∈ ⊥(S⊥). By the construction, N is

the union of the continuous chain (Nα | α < λ) where Nα = Pα/M .
Since Pα+1/Pα is isomorphic to a direct sum of copies of S by the pushout

construction, so is Nα+1/Nα
∼= Pα+1/Pα. Since S ∈ ⊥(S⊥), Lemma 2.1

shows that N ∈ ⊥(S⊥).
2. Follows by part 1 (cf. Lemma 1.13).

Again, Theorem 2.2 is not the most general result available: for example,
C is a preenvelope class whenever C is the class of all objects injective w.r.t.
a set of monomorphisms in a Grothendieck category, [46].

From Theorem 2.2, we easily get a characterization of the (complete)
cotorsion theories cogenerated by sets of modules:

Corollary 2.3 Let C = (A,B) be a cotorsion theory. Then the following
are equivalent

1. C is cogenerated by a set of modules.

2. There is a module M such that A consists of all direct summands, A,
of modules of the form Z = Zλ where λ is a cardinal, (Zα | α ≤ λ) is a
continuous chain, Z0 is a free module and for each α < λ, Zα+1/Zα ∼=
M . Moreover, Z can be taken so that there exists P ∈ KC such that
A⊕ P ∼= Z.

Proof. 1. implies 2.: We have B = M⊥ for a module M . Take A ∈ A
and let 0 −→ N

µ
−→ F −→ A −→ 0 be a short exact sequence with F free. By

Theorem 2.2.1, there is a special B-preenvelope, 0 −→ N
ν
−→ P −→ P/N −→ 0
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of N , such that P/N is a union of a continuous chain, (Pα/N | α < λ), with
successive factors isomorhic to M . Consider the pushout of µ and ν:

0 0




y





y

0 −−−−→ N
µ

−−−−→ F −−−−→ A −−−−→ 0

ν





y





y

∥

∥

∥

0 −−−−→ P −−−−→ Z −−−−→ A −−−−→ 0




y

π





y

P/N P/N




y





y

0 0

Then Z = ∪α<λZα where Zα are the pre-images of Pα/N in π. So Z0 = F
and the succesive factors Zα+1/Zα are isomorphic to M . The second row
splits since P ∈ B and A ∈ A, so A⊕P ∼= Z. Finally, since F, P/N ∈ A, we
have Z ∈ A, so P ∈ KC.

2. implies 1. By Lemma 2.1, since both R ∈ A and M ∈ A.

Though we will see that many cotorsion theories satisfy the equivalent
conditions of Corollary 2.3, this is not always the case:

Example 2.4 Let R = Z and W = (⊥Z, (⊥Z)⊥) (note that ⊥Z is the class
of all Whitehead groups). Using the model of ZFC with Shelah’s uniformiza-
tion principle UP [20], [44], Eklof and Shelah have recently proved that it is
consistent with ZFC + GCH that W is not cogenerated by a set, see [21].

This consistency result is not provable in ZFC: Eklof and the author
proved that assuming Gödel’s axiom of constructibility (V = L), C is com-
plete whenever C is a cotorsion theory generated by a set of modules over a
right hereditary ring, [23].

Important examples of complete cotorsion theories are provided by cotor-
sion theories generated by classes of pure-injective modules. Before proving
this, we require a definition, and a lemma on purity, following [23, §3].

Definition 2.5 For any module A and any cardinal κ, a κ-refinement of A
(of length σ) is an increasing sequence (Aα | α ≤ σ) of pure submodules of
A such that A0 = 0, Aσ = A, Aα = ∪β<αAβ for all limit ordinals α ≤ σ,
and card(Aα+1/Aα) ≤ κ for all α+ 1 ≤ σ.

Lemma 2.6 Let κ ≥ card(R) + ℵ0.
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1. Let M be a module and X be a subset of M with card(X) ≤ κ. Then
there is a pure submodule N ⊆∗ M such that X ⊆ N and card(N) ≤ κ.

2. Assume C ⊆∗ A and B/C ⊆∗ A/C. Then B ⊆∗ A.

3. Assume A0 ⊆ · · · ⊆ Aα ⊆ Aα+1 ⊆ . . . is a chain of pure submodules
of M . Then ∪αAα is a pure submodule of M .

Proof. Well-known (see [36, Theorem 6.4]).

Lemma 2.7 Let κ = card(R) + ℵ0. Let C = (A,B) be a cotorsion theory
generated by a class C ⊆ PI. Then the following are equivalent

1. A ∈ A.

2. There is a cardinal λ such that A has a κ-refinement (Aα | α ≤ λ)
with Aα+1/Aα ∈ A for all α < λ.

Proof. 1. implies 2.: If card(A) ≤ κ, we let λ = 1, A0 = 0, and A1 = A.
So we can assume that card(A) > κ. Let λ = card(A). Then A ∼= F/K
where F = R(λ) is a free module. We enumerate the elements of F in a
λ-sequence: F = {xα | α < λ}. By induction on α, we will define a sequence
(Aα | α ≤ λ) so that for all α ≤ λ, Aα is pure in A and belongs to ⊥C. Since
each C ∈ C is pure-injective, it will follow from the long exact sequence
induced by

0 → Aα → Aα+1 → Aα+1/Aα → 0

that Aα+1/Aα ∈ A for all α < λ.
Aα will be constructed so that it equals (R(Iα) +K)/K for some Iα ⊆ λ

such that R(Iα) ∩ K is pure in K. Let A0 = 0. Assume Aβ has been
defined for all β < σ. Suppose first that σ = α + 1. By induction on
n < ω we will define an increasing chain F0 ⊆ F1 ⊆ . . . and then put
Aα+1 = ∪n<ω(Fn + K)/K. We require that card(Fn+1/Fn) ≤ κ for all
n < ω, and furthermore: for n odd, (Fn + K)/K is pure in F/K; for n
even, Fn = R(Jn) for some Jn ⊇ Jn−2 ⊇ · · · ⊇ J0 and Fn ⊇ K ′

n where
Fn−1 ∩K ⊆ K ′

n ⊆∗ K.
First, put F0 = R(Iα) and let J0 = Iα and K ′

0 = R(Iα) ∩ K. Assume
Fn−1 has been constructed and n is odd. By part 1. of Lemma 2.6 there is a
pure submodule (Fn +K)/(Fn−2 +K) ⊆∗ F/(Fn−2 +K) of cardinality ≤ κ
containing (xαR+ Fn−1 +K)/(Fn−2 +K). Moreover, we can choose Fn so
that card(Fn/Fn−1) ≤ κ. By part 2. of Lemma 2.6, (Fn +K)/K is pure in
F/K.

Assume n > 0 is even. We first define K ′
n: by part 1. of Lemma 2.6, we

find a pure submodule K ′
n/K

′
n−2 ⊆∗ K/K

′
n−2 of cardinality ≤ κ containing

(Fn−1 ∩ K)/K ′
n−2. This is possible since K ′

n−2 ⊇ Fn−3 ∩ K and (Fn−1 ∩
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K)/(Fn−3 ∩K) embeds in Fn−1/Fn−3, so it has cardinality ≤ κ. By part 2.
of Lemma 2.6, we have K ′

n ⊆∗ K.
We can choose Jn ⊆ λ such that card(Jn − Jn−2) ≤ κ and Fn−1 +K ′

n ⊆
R(Jn) = Fn. This is possible since card((Fn−1 +K ′

n)/Fn−2) ≤ κ; indeed, we
have the exact sequence

0 → Fn−1/Fn−2 → (Fn−1 +K ′
n)/Fn−2 → (Fn−1 +K ′

n)/Fn−1 → 0

and (Fn−1 +K ′
n)/Fn−1

∼= K ′
n/(Fn−1 ∩K) has cardinality ≤ κ because it is

a homomorphic image of K ′
n/K

′
n−2.

Now, define Aα+1 = ∪n<ω(Fn +K)/K and Iα+1 = ∪n<ωJ2n. By part 3.
of Lemma 2.6, Aα+1 ⊆∗ A. Clearly, card(Aα+1/Aα) ≤ κ.

We have Aα+1
∼= F ′/K ′, where F ′ = ∪n<ωF2n and K ′ = F ′ ∩K. Also,

F ′ = R(Iα+1) is free, and K ′ = ∪n<ωK
′
2n is pure in K by construction and

part 3. of Lemma 2.6.
Let C ∈ C. In order to prove that Ext(Aα+1, C) = 0, we have to extend

any f ∈ Hom(K ′, C) to an element of Hom(F ′, C). First, f extends to K,
since K ′ ⊆∗ K and C is pure-injective. By the assumption 1., we can extend
further to F , and then restrict to F ′.

Finally, if σ ≤ λ is a limit ordinal, let Aσ = ∪β<σAβ ; that Aσ has the
desired properties follows from Lemma 2.1 and part 3. of Lemma 2.6.

2. implies 1.: By Lemma 2.1.

Theorem 2.8 Let GC = (A,B) be a cotorsion theory generated by a class
C ⊆ PI. Then GC is complete. Moreover, A is a cover class and B is an
envelope class.

Proof. Let κ = card(R) + ℵ0. Denote by H the direct sum of a rep-
resentative set of the class {A ∈ Mod-R | card(A) ≤ κ& Ext(A, C) = 0}.
Clearly, B ⊆ H⊥. Conversely, take D ∈ H⊥. Let A ∈ A; by Lemma 2.7, A
has a κ-refinement (Aα | α ≤ λ). By the choice of H, Ext(Aα+1/Aα, D) = 0
for all α < λ and hence, by Lemma 2.1, Ext(A,D) = 0. So D ∈ B. This
proves that B = H⊥. By Theorem 2.2.2, GC is a complete cotorsion theory.

By Corollary 1.19, it remains to show that the class A is closed under
arbitrary direct limits. Assume P ∈ PI. Then ⊥P is closed under homo-
morphic images of pure epimorphisms. But the canonical map of a direct
sum on to a direct limit is well-known to be a pure epimorphism (cf. [49,
33.9]). So ⊥P is closed under arbitrary direct limits, and so is A = ⊥C.

There is an analogue of Lemma 2.7 for the bifunctor Tor:

Lemma 2.9 Let C be any class of left R-modules. Let κ = card(R) + ℵ0.
The following conditions are equivalent for any module A:
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1. A ∈ ⊺C,

2. there is a cardinal λ such that A has a κ-refinement (Aα | α ≤ λ) such
that Aα+1/Aα ∈ ⊺C for all α < λ.

Proof. Put P = {Cc | C ∈ C}. Then P is a class of pure-injective
modules and ⊥P = ⊺C by Lemma 1.11. So the assertion follows from Lemma
2.7.

Theorem 2.10 1. Let C be any class of left R-modules. Then every
module has a ⊺C-cover.

2. Let D be any class consisting of character modules (of left R-modules).
Then every module has a ⊥D-cover.

Proof. 1. As above, we have A = ⊺C = ⊥P where P is a class of
pure-injective modules. Then every module has an A-cover by Theorem
2.8.

2. Since any character module is pure-injective, every module has a
⊥D-cover by Theorem 2.8.

Example 2.11 1. Let k be a field and R be a k-algebra. Let M be a class of
k-finite dimensional modules. Then every module has a ⊥M-cover. Indeed,
any k-finite dimensional module is dual (in the k-vector space duality), hence
pure-injective, and Theorem 2.8 applies.

2. Assume that R is a right pure-semisimple ring. Let C be any class
of modules. Then every module has a ⊥C-cover. This is because every R-
module is pure-injective (see [36, Theorem 8.4]), so Theorem 2.8 applies
once again.

3 A proof of the FCC and further applications

Now, we are in a position to construct at once various approximations of
modules over arbitrary rings. We start with a proof of the Flat Cover
Conjecture, and with a generalization of the Enochs’ construction [25] of
torsion-free covers of modules over domains, cf. [9], [45]:

Theorem 3.1 1. Every module has a flat cover and an Enochs cotorsion
envelope.

2. Every module has a torsion-free cover and a Warfield cotorsion enve-
lope.
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Proof. We have FL = ⊥PI, and T F = ⊥D where D = {N c | N =
R/Rr& r ∈ R} (cf. Lemma 1.11 and Definition 1.12). So Theorem 2.8
applies to the cotorsion theories (FL, EC) and (T F ,WC), respectively.

Example 3.2 Let R be a domain. A module M is Matlis cotorsion pro-
vided that Ext1R(Q,M) = 0, [39]. For example, ifM is a reduced torsion-free
module then M ∈ MC iff M is R-complete, [29, Proposition V.1.2]. Sim-
ilarly, if M is bounded (i.e., there exists 0 6= r ∈ R with Mr = 0) then
M ∈ MC, [29, XII.3.3].

Denote by MC the class of all Matlis cotorsion modules. Since Q is a
flat module (namely, a localization of R at 0) we have WC ⊆ EC ⊆ MC.

The coincidence of these classes characterizes the Prüfer and Dedekind
domains: R is Prüfer iff FL = T F iff EC = WC, [29, XII.3]. By [39], R
is Dedekind iff WC = MC. In fact, for any domain WC = MC ∩ I1, [29,
XII.3].

By Theorem 2.2, (⊥MC,MC) is a complete cotorsion theory. Moreover,
Mod-Q is a subclass of Mod-R closed under extensions and arbitrary direct
limits, Mod-Q⊥ = MC, and Q is a

∑

-injective module. By Theorems 2.2.1
and 1.14, we infer that each module has an MC-envelope.

In some cases, there is a more explicit description of the cotorsion en-
velopes: if M is reduced and torsion-free then the MC-envelope is just the
inclusion M →֒ M̂ where M̂ is the R-completion of M , [45], [29, V.2]. The
WC-envelope of any module M coincides with the inclusion M →֒ M̄ where
M̄ denotes the Warfield cotorsion hull of M , cf. Definition 1.12, Lemma 1.17
and [29, XII.4].

Next, we prove existence of special divisible and FP-injective preen-
velopes of modules:

Definition 3.3 A module is FP-injective provided that Ext1R(F,M) = 0 for
each finitely presented module F . Denote by FI the class of all FP-injective
modules.

A module M is cyclically covered (finitely covered) provided that M is
a direct summand in a module N such that N is a union of a continuous
chain, (Nα | α < λ), for a cardinal λ, N0 = 0, and Nα+1/Nα is cyclically
presented (finitely presented) for all α < λ. Denote by CC (FC) the class of
all cyclically covered (finitely covered) modules.

Clearly, I0 ⊆ FI ⊆ DI and CC ⊆ FC for any ring R. By Auslander
lemma, CC ⊆ P1 in the case when R is a domain. Moreover, FC = P1 for
any Prüfer domain by [29, Corollary IV.4.7].

Theorem 3.4 1. (CC,DI) is a complete cotorsion theory. In particular,
every module has a special divisible preenvelope.
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2. (FC,FI) is a complete cotorsion theory. In particular, every module
has a special FP-injective preenvelope.

Proof. PutM =
⊕

r∈RR/rR and let N be the direct sum of a represen-
tative set of all finitely presented modules. By Theorem 2.2 and Corollary
2.3, (CC,DI) and (FC,FI) are complete cotorsion theories cogenerated by
M and N , respectively.

The existence of special divisible preenvelopes in the particular case of
modules over domains was essentially proved in [29, VI.3]. In Proposition
4.8 and Theorem 4.9, we will see that the statement of Theorem 3.4 is the
best possible in the sense that there exist no divisible envelopes, and no
FP-injective envelopes, in general.

Next, we consider approximations by modules of a finite homological
dimension:

Theorem 3.5 Let n < ω. Then (⊥In, In) is a complete cotorsion theory.
In particular, every module has a special In-preenvelope.

Proof. Let M be a module. Let

0 → N → I0
f0
→ I1

f1
→ · · · → In−1

fn−1

→ In
fn
→ . . .

be an injective resolution of M . Put Sn = Im fn−1 = Ker fn. Then
N ∈ In iff Sn is injective. By Baer’s criterion, the latter is equivalent to
Ext1R(R/I, Sn) = 0, and hence – by dimension shifting – to ExtnR(R/I,M) =
0, for all right ideals I of R. Denote by CI the n-th syzygy module (in a
projective resolution) of the cyclic module R/I. Then ExtnR(R/I,M) = 0
iff Ext1R(CI ,M) = 0. So In = (

⊕

I⊆R CI)
⊥, and the assertion follows by

Theorem 2.2.2.

Theorem 3.5 was proved in the particular case when R is right noetherian
in [1, Proposition 3.1]. Our general proof is based on the existence of a test
module for injectivity, that is, on Baer’s criterion.

The corresponding result for (Pn,P
⊥
n ) can be proved dually in the case

when there exists a test module for projectivity: this happens whenR is right
perfect or, under V = L, when R is right hereditary, cf. [44]. Nevertheless, if
R is not right perfect then the Shelah’s uniformization principle UP implies
that there are no such test modules at all [44]. So one needs a different
approach of [1]:

Lemma 3.6 Let R be a ring and n < ω. Let κ = card(R)+ℵ0. Let M ∈ Pn.
Then there are a cardinal λ and a continuous chain, (Mα | α < λ), consisting
of submodules of M such that M = ∪α<λMα, Mα,Mα+1/Mα ∈ Pn and
card(Mα+1/Mα) ≤ κ for all α < λ.
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Proof. Let

0 → Pn
fn
→ Pn−1 → · · · → P1

f1
→ P0

f0
→M → 0

be a projective resolution of M . By the Kaplansky Theorem [2], each
projective module is a direct sum of countably generated modules, so Pi =
⊕α<λi

Piα where Piα is countably generated for all i ≤ n and α < λi.
Let 0 6= x ∈ M . Then there is a finite subset F0 ⊆ λ0 such that

x ∈ f0(⊕j∈F0
P0j). Further, there is a countable subset F1 ⊆ λ1 such that

Ker(f0 ↾ ⊕j∈F0
P0j) ⊆ f1(⊕j∈F1

P1j). Similarly, there is a countable subset
F2 ⊆ λ2 such that Ker(f1 ↾ ⊕j∈F1

P1j) ⊆ f2(⊕j∈F2
P2j), etc. Finally, there

is a countable subset Fn ⊆ λn such that Ker(fn−1 ↾ ⊕j∈Fn−1
Pn−1,j) ⊆

fn(⊕j∈FnPnj). Now, there is a countable subset Fn−1 ⊆ F ′
n−1 ⊆ λn−1

such that fn(⊕j∈FnPnj) ⊆ ⊕j∈F ′

n−1
Pn−1,j etc. Finally, there is a countable

subset F0 ⊆ F ′
0 ⊆ λ0 such that f1(⊕j∈F ′

1
P1j) ⊆ ⊕j∈F ′

0
P0j . Continuing this

back and forth procedure, we obtain for each i ≤ n a countable subset
Ci = Fi ∪ F

′
i ∪ F

′′
i ∪ . . . of λi such that the restricted sequence

0 → ⊕j∈CnPnj
fn
→ ⊕j∈Cn−1

Pn−1,j → . . .

· · · → ⊕j∈C1
P1j

f1
→ ⊕j∈C0

P0j
f0
→ N → 0

is exact, and x ∈ N ⊆M . By the construction, also the factor-sequence

0 → ⊕j /∈Cn
Pnj

f̄n
→ ⊕j /∈Cn−1

Pn−1,j → . . .

· · · → ⊕j /∈C1
P1j

f̄1
→ ⊕j /∈C0

P0j
f̄0
→M/N → 0

is exact. So N,M/N ∈ Pn. Since card(N) ≤ κ, we put M0 = N and
proceed similarly, constructing the required continuous chain by induction;
in limit steps, we use the fact that Pn is closed under unions of chains by
Auslander lemma.

Theorem 3.7 Let n < ω. Then (Pn,P
⊥
n ) is a complete cotorsion theory.

In particular, every module has a special Pn-precover.

Proof. By Lemmas 2.1 and 3.6, we have M⊥
n = P⊥

n where Mn denotes
the direct sum of a representative set of those modules from Pn which have
cardinality ≤ κ. Now, the assertion follows by Theorem 2.2.2.

Though (Pn,P
⊥
n ) is always complete, there may be no minimal approx-

imations available: By a well-known result of Bass, P0 is a cover class iff R
is right perfect [2], while trivially P⊥

0 is always an envelope class. For the
case of n = 1, see Theorem 4.9.

Theorem 3.7 is no more true when we replace Mod-R by the category
of all finite dimensional modules – counter-examples for each n ≥ 1 were
constructed in [35].
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If R is right noetherian then there is a cardinal κ such that each injective
module is a direct sum of ≤ κ generated modules [2], and In is closed under
direct limits. So the analog of Lemma 3.6 holds true for In - the proof is just
dual to the one given in 3.6. By Theorems 2.2.2, 1.14 and by Lemma 2.1,
it follows that each module over a right noetherian ring has a I⊥

n -envelope,
cf. [1].

4 Tilting and cotilting approximations

Tilting theory arised as a generalization of the classical Morita theory. Recall
that two rings R and S are Morita equivalent provided that the categories
Mod-R and Mod-S are equivalent:

Mod-R
F
⇄
G

Mod-S.

So Morita equivalent rings have exactly the same properties defined by
category theoretic properties of the full module categories. Morita equiv-
alence is well-understood also ring theoretically: R is Morita equivalent
to S iff there is n < ω and an idempotent matrix e ∈ Mn(R) such that
S ∼= eMn(R)e and Mn(R)eMn(R) = Mn(R). In other words, S ∼= End(PR)
where P is a progenerator (= finitely generated projective generator for
Mod-R). Moreover, F ∼= HomR(P,−) and G ∼= −⊗S P , [2].

Tilting modules generalize the progenerators:

Definition 4.1 A module T is tilting provided that

1. T ∈ P1,

2. Ext1R(T, T (κ)) = 0 for all cardinals κ, and

3. there is an exact sequence 0 −→ R −→ T1 −→ T2 −→ 0 where T1, T2 ∈
Add(T ).

A ring S is called tilted from R if there is a tilting module T such that
S ∼= End(TR).

Of particular importance are the finitely generated tilting modules. The
fundamental result of the tilting theory - the Tilting Theorem - [11], [33],
[40], says that a finitely generated tilting module T induces a pair of cat-
egory equivalences between T⊥ and ⊺T , and between KerHomR(T,−) and
Ker(−⊗S T ), where S = End(TR):

T⊥ = KerExt1R(T,−)
HomR(T,−)

⇄
−⊗ST

Ker TorS1 (−, T ) = ⊺T
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Ker HomR(T,−)
Ext1R(T,−)

⇄
TorS

1 (−,T )

Ker(−⊗S T )

In fact, the pairs (T⊥,KerHomR(T,−)) and (Ker(−⊗S T ), ⊺T ) are tor-
sion theories in Mod-R and Mod-S, respectively. So the pair of category
equivalences is sometimes refered to as a tilting counter-equivalence, [13].

If S is tilted from R then Mod-S is not necessarily equivalent to Mod-R,
but the properties of R and S are not that different: for example, if T
is finitely generated then the global dimension of R and S differs at most
by 1, R and S have isomorphic Grothendieck groups in case R and S are
right artinian etc. We refer to [6] and [40] for further properties of finite
dimensional tilting modules and tilted algebras.

Rather than investigating the tilting counter-equivalences we will aim at
relations to the approximation theory. First, we need a characterization of
tilting modules in terms of the classes they generate:

Lemma 4.2 A module T is tilting iff Gen(T ) = T⊥. In this case Pres(T ) =
Gen(T ).

.
Proof. Assume T is tilting. Condition 4.1.2 says that T (κ) ∈ T⊥ for

any cardinal κ, and 4.1.1 that T⊥ is closed under homomorphic images. So
Gen(T ) ⊆ T⊥.

Let M ∈ T⊥ and let f : R(λ) → M be an epimorphism. Consider the
exact sequence

0 −→ R(λ) g
−→ T

(λ)
1 −→ T

(λ)
2 −→ 0

induced by condition 4.1.3. We form the pushout of f and g:

0 −−−−→ R(λ) g
−−−−→ T

(λ)
1 −−−−→ T

(λ)
2 −−−−→ 0

f





y
h





y

∥

∥

∥

0 −−−−→ M −−−−→ G −−−−→ T
(λ)
2 −−−−→ 0





y





y

0 0

Since M ∈ T⊥, the second row splits, so M is a direct summand in G.
Since h is surjective, G ∈ Gen(T ), hence M ∈ Gen(T ).

Conversely, assume that Gen(T ) = T⊥. Let N be a module and E be
its injective hull. Applying HomR(T,−) to 0 −→ N −→ E −→ E/N −→ 0, we
get 0 = Ext1R(T,E/N) → Ext2R(T,N) → Ext2R(T,E) = 0, since T⊥ is closed
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under homomorphic images. So Ext2R(T,−) = 0, i.e., T ∈ P1. Condition
4.1.2 is clear by assumption.

It remains to prove that Pres(T ) = Gen(T ). Let M ∈ Gen(T ). Then the
canonical map ϕ ∈ HomR(T (HomR(T,M)),M) is surjective, so there is an exact

sequence 0 −→ K −→ T (HomR(T,M)) ϕ
−→ M −→ 0. Applying HomR(T,−), we

get

0 → HomR(T,K) → HomR(T, T (HomR(T,M)))
HomR(T,ϕ)

→ HomR(T,M)

→ Ext1R(T,K) → Ext1R(T, T (HomR(T,M))) = 0.

By definition, HomR(T, ϕ) is surjective, so Ext1R(T,K) = 0 and K ∈
Gen(T ), q.e.d.

It follows that if T is tilting then Gen(T ) is a torsion class of modules,
called the tilting torsion class generated by T .

In the finite dimensional algebra case, finite dimensional tilting modules
were characterized by Bongartz: they coincide with the modules of the form
⊕i≤rM

ni

i where Mi ∈ P1 is an indecomposable splitter, Mi ≇ Mj for all
i 6= j ≤ r, and r is the rank of the Grothendieck group of R, [10].

We will consider the Dedekind domain case:

Example 4.3 Let R be a Dedekind domain and P be a set of non-zero
prime ideals of R. Put R(P ) = ∩q /∈PRq where Rq denotes the localization
of R at the prime ideal q. Put TP =

⊕

p∈P E(R/p) ⊕ R(P ). Then TP is a
tilting module, [47].

Denote by TP the class of all modules which are p-divisible for all p ∈ P .
Then TP = Gen(TP ) is a tilting torsion class, cf. [45], [47].

Assuming V = L, if R = Z (or R is any small Dedekind domain) then the
torsion classes of the form TP are the only tilting torsion classes of modules
over R, see [32] (or [47]). In particular, there is only a set of cotorsion
theories of abelian groups cogenerated by tilting groups. This contrasts
with the fact that (in ZFC) there is a proper class of complete cotorsion
theories of abelian groups, [31].

Now, we will characterize tilting torsion classes among all torsion classes
of modules in terms of approximations. We will work in a slightly more
general setting of pretorsion classes: a class of modules, C, is a pretorsion
class provided that C is closed under arbitrary direct sums and homomorphic
images.

Theorem 4.4 Let T be a pretorsion class of modules. The following con-
ditions are equivalent:
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1. T is a tilting torsion class;

2. T is a special preenvelope class;

3. R has a special T -preenvelope.

Proof. 1. implies 2.: By Lemma 4.2, T = T⊥ for a tilting module T .
So 2. follows by Theorem 2.2.2.

2. implies 3.: Trivial.
3. implies 1.: Let 0 −→ R −→ T1 −→ T2 −→ 0 be a special T -preenvelope

of R. We will prove that T = T1⊕T2 is a tilting module such that Gen(T ) =
T .

Since T is a pretorsion class, we have T ∈ T , and Gen(T ) ⊆ T . Let
M ∈ T⊥(= T⊥

2 ). The pushout argument from the proof of Lemma 4.2
shows that M ∈ Gen(T ). Finally, the T -preenvelope of R is special, so
T2 ∈ ⊥T , and T ⊆ (⊥T )⊥ ⊆ T⊥

2 = T⊥.
This proves that T⊥ = Gen(T ) = T , so T is tilting by Lemma 4.2.

Corollary 4.5 A pretorsion class T is a tilting torsion class iff T = T⊥

for a splitter T .

Proof. By Theorems 2.2 and 4.4.

If T is a tilting module then (⊥Gen(T ),Gen(T )) is a complete cotorsion
theory cogenerated by T . The structure of the class ⊥ Gen(T ) follows from
Corollary 2.3: each element M ∈⊥ Gen(T ) is a direct summand in a module
N such that N is an extension of a free module by a direct sum of copies of
T . In fact, there is a more precise description available:

Theorem 4.6 Let R be a ring and T be a tilting module. Let 0 → R →
T1 → T2 → 0 be a short exact sequence with T1, T2 ∈ Add(T ) (cf. Definition
4.1). Denote by XT the class of all direct summands of the modules X such
that there exist cardinals κ, λ, and an exact sequence 0 → R(λ) → X →

T
(κ)
2 → 0.

Then XT = ⊥(T⊥), so the cotorsion theory cogenerated by T is CT =
(XT ,Gen(T )). Moreover, KCT

= Add(T ) ⊆ XT ⊆ P1 ∩
⊥ Add(T ).

Proof. Let M ∈ ⊥ Gen(T ). Let 0 → N → F → M → 0 be a short
exact sequence with F free. Let κ be such that there exists an epimorphism

f : R(κ) → N . Let ν be the embedding of R(κ) into T
(κ)
1 . Consider the

pushout of ν and f :
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0 0




y





y

K K




y





y

0 −−−−→ R(κ) ν
−−−−→ T

(κ)
1 −−−−→ T

(κ)
2 −−−−→ 0

f





y





y

∥

∥

∥

0 −−−−→ N −−−−→ G −−−−→ T
(κ)
2 −−−−→ 0





y





y

0 0

The second column gives G ∈ Gen(T1) ⊆ Gen(T ). Next, consider the
pushout of the monomorphisms N → F and N → G:

0 0




y





y

0 −−−−→ N −−−−→ F −−−−→ M −−−−→ 0




y





y

∥

∥

∥

0 −−−−→ G −−−−→ X −−−−→ M −−−−→ 0




y





y

T
(κ)
2 T

(κ)
2





y





y

0 0

The second column gives X ∈ XT . The second row splits since M ∈
⊥ Gen(T ). So M ∈ XT .

Conversely, assume thatM ∈ XT , soM is a summand of someX ∈ XT of

the form 0 → F → X → T
(κ)
2 → 0 where F is free. Clearly, F ∈ ⊥ Gen(T ).

Moreover, T
(κ)
2 ∈ ⊥ Gen(T ), since T ∈ ⊥ Gen(T ). It follows that X, and

hence M , belong to ⊥ Gen(T ).
Since T ∈ P1, all elements of XT have projective dimension ≤ 1. Since

Add(T ) ⊆ Gen(T ), we have also XT ⊆ ⊥ Add(T ). On the other hand,
Add(T ) ⊆ XT as T ∈ ⊥ Gen(T ). It follows that Add(T ) ⊆ KCT

.
Finally, take M ∈ KCT

. By Lemma 4.2, there is an exact sequence
0 → K → T (σ) → M → 0, where σ is a cardinal and K ∈ Gen(T ). Since
M ∈ ⊥ Gen(T ), the sequence splits, so M ∈ Add(T ).
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As in Corollary 2.3, we see that the complement G in the proof of The-
orem 4.6 satisfies G ∈ Add(T ).

Another interesting example of a tilting module is the Fuchs’ divisible
module [28], [29, VI.3]:

Example 4.7 Assume that R is a domain. Denote by δ the Fuchs’ divisible

module: δ
def
= F/G, where F is the free module with the free basis consisting

of all k-tuples (r1, ..., rk) where k < ω and 0 6= ri ∈ R (i ≤ k), and G is
the submodule of F generated by all elements of the form (r1, ..., rk)rk −
(r1, ..., rk−1) (k ≥ 1). For k = 0, we have w = (∅) + G ∈ δ, wR ∼= R, and
δ/wR is torsion. Clearly, δ is a divisible module.

δ is a tilting module with the tilting torsion class Gen(δ) = DI. Indeed,
δ ∈ P1 by [29, Lemma VI.3.1]. Also, for all κ, ExtR(δ, δ(κ)) = 0 by [29,
Proposition VI.3.4]. Consider the exact sequence 0 → wR → δ → δ/wR →
0. Since wR ∼= R and δ/wR is isomorphic to a summand of δ by [29, p.
124], δ is tilting by Definition 4.1. By [29, Proposition VI.3.4], δ⊥ = Gen(δ)
contains all divisible modules. On the other hand, δ, and hence every module
in Gen(δ), is divisible.

By Theorem 4.4, every module has a special Gen(δ)-preenvelope which is
simply the special DI-preenvelope of Theorem 3.4. Moreover, KCδ

= Add(δ)
by Theorem 4.6.

By Theorem 3.7, (Pn,P
⊥
n ) is a complete cotorsion theory. It appears

to be open to determine when the P⊥
n -preenvelopes have minimal versions

(= envelopes) for n ≥ 1. Our next theorem will give a negative answer for
n = 1 in the particular case of Prüfer domains with Q /∈ P1. First, we prove
that DI-envelopes may not exist in general (cf. Theorem 3.4.1):

Proposition 4.8 Let R be a domain. Then the following are equivalent:

1. Each free module has a DI-envelope.

2. R has a DI-envelope.

3. Q ∈ P1.

Proof. That 1. implies 2. is clear. Assume 2. Let 0 → R
µ
→ D →

D/R→ 0 be exact, where µ : R →֒ D is a (special) DI-envelope of R. Take
0 6= r ∈ R. Since Dr = D, there exists d ∈ D with dr = 1. Since µ is special,
ExtR(D/R,D) = 0. It follows that there exists ψr ∈ HomR(D,D) such that
ψr(1) = d. Denote by φr the endomorphism of D given by the multiplication
by r. Then µ = ψrφrµ. By assumption, ψrφr is an automorphism of D.
This proves that φr is monic for all 0 6= r ∈ R, hence D is torsion free. By
[29, Theorem VI.4.1], D ∼= Q(κ) for a cardinal κ. By Lemma 1.3, we have
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κ = 1. Since Q/qR ∼= Q/R for any 0 6= q ∈ Q, and µ is special, we infer
from Theorem 4.6 that Q/R ∈ P1. The latter is equivalent to Q ∈ P1.

3. implies 1. Assume Q ∈ P1. Let F = R(κ) be a free module of rank
κ and put E = Q(κ). We will prove that the inclusion ν : F →֒ E is a
DI-envelope of F . Since Q is

∑

-injective, we have Ext1R(Q/R,Q(λ)) = 0
for any λ. Since Q ∈ P1, [29, Theorem VI.1.3] implies that DI = Gen(Q),
and clearly Q/R ∈ P1. So Ext1R(Q/R,D) = 0 for any divisible module D,
and ν is a special DI-preenvelope of F .

Assume that ϕ is an endomorphism of E with ϕν = ν. Since F is
essential in E, ϕ is monic. Since HomR(E,E) = HomQ(E,E), ϕ(E) is a
Q-subspace of E containing F , hence ϕ is surjective. This proves that ν is
a DI-envelope of F .

Similarly, FP-injective envelopes may not exists (cf. Theorem 3.4.2):

Theorem 4.9 Assume R is a Prüfer domain.

1. The cotorsion theory cogenerated by δ is Cδ = (P1,DI), and DI = FI.

2. If proj.dim(Q) ≥ 2, then no free module has an FI-envelope.

Proof. 1. We prove that P1 = ⊥DI. In view of Example 4.7 and
Theorem 4.6, it suffices to prove that P1 ⊆ ⊥DI: Each element of P1 is a
union of a continuous chain of submodules such that all successive factors
are finitely presented cyclic by [29, Corollary IV.4.7]. By Lemma 2.1, we
get P⊥

1 = D⊥ where D is the direct sum of a representative set of all
finitely presented cyclic modules. By [29, Proposition II.2.2], D⊥ = DI. In
particular, P1 ⊆ ⊥DI.

Since any Prüfer domain is coherent, each finitely generated submodule
of a finitely presented module is likewise finitely presented. So if F is finitely
presented then there exist n < ω and a chain of submodules 0 = F0 ⊂ F1 ⊂
· · · ⊂ Fn = F such that Fi+1/Fi is cyclic and finitely presented for all
i < n. Since R is Prüfer, each finitely generated ideal is projective. By [29,
Proposition II.2.2], we have FI = {⊕I⊆R,gen(I)<ωR/I}

⊥ = DI.
2. By part 1. and by Proposition 4.8.

We turn to the dual case of cotilting modules. They generalize injective
cogenerators:

Definition 4.10 A module C is cotilting provided that

1. C ∈ I1,

2. Ext1R(T κ, T ) = 0 for all cardinals κ, and
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3. there is an exact sequence 0 −→ C1 −→ C2 −→W −→ 0 where C1, C2 ∈
Prod(T ) and W is an injective cogenerator for Mod-R.

If SUR is a Morita bimodule (i.e., a faithfully balanced bimodule which
is an injective cogenerator on either side) then U induces a Morita duality
between Mod-R and S-Mod, [2]. Similarly, faithfully balanced cotilting
bimodules induce a generalized Morita duality [15], [17].

Again, rather than investigating the dualities, we will aim at relations
between cotilting and the approximation theory. First, we formulate the
property of being a cotilting module in terms of classes of modules:

Lemma 4.11 A module C is cotilting iff Cogen(C) = ⊥C. In this case
Copres(C) = Cogen(C).

.
Proof. Dual to the proof of Lemma 4.2.

It follows that if C is cotilting then Cogen(C) is a torsion-free class of
modules, called the cotilting torsion-free class cogenerated by C.

We would like to characterize cotilting torsion-free classes among all
torsion-free classes of modules in terms of approximations. Again, we will
work in a slightly more general setting of pretorsion-free classes: a class
of modules, C, is a pretorsion-free class provided that C is closed under
submodules and arbitrary direct products.

The problem is that we do not have a dual of Theorem 2.2 (for cotorsion
theories generated by a single module), or, more precisely, we do not know
whether all cotilting modules are pure-injective (then we could simply use
Theorem 2.8). But there is a way around: we make use of a generalized dual
of the “Bongartz lemma”, [44]:

Lemma 4.12 Let R and S be rings. Let A ∈ S-Mod-R and B ∈ Mod-R.
Denote by λ the number of generators of the left S-module Ext1R(B,A).
Assume that Ext1R(Aλ, A) = 0. Then there is a module C ∈ Mod-R such
that

1. Ext1R(C,A) = 0 and

2. there is an exact sequence 0 → Aλ → C → B → 0 in Mod-R.

Proof. We choose extensions Eα = 0 −→ A −→ Eα
ρα
−→ B −→ 0 (α < λ)

so that their equivalence classes generate Ext1R(B,A) as a left S-module.

Let 0 −→ Aλ
µ
−→ C −→ B −→ 0 be the extension obtained by a pullback of

the direct product extension 0 −→ Aλ −→
∏

α<λEα

Q
ρα

−−−→ Bλ −→ 0 and of
∆B ∈ HomR(B,Bλ) defined by ∆B(b) = (b | α < λ). For each α < λ, we
have the following commutative diagram:
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0 −−−−→ Aλ −−−−→
∏

α<λEα

Q
ρα

−−−−→ Bλ −−−−→ 0
∥

∥

∥

τ

x





∆B↑σα





y

0 −−−−→ Aλ
µ

−−−−→ C −−−−→ B −−−−→ 0

πα





y
h





y

∥

∥

∥

0 −−−−→ A
f

−−−−→ Xα
g

−−−−→ B −−−−→ 0
∥

∥

∥

∥

∥

∥

0 −−−−→ A −−−−→ Eα
ρα

−−−−→ B −−−−→ 0

where σα is the α-th projection of Bλ to B, and the third row is obtained
by pushing out the second row along the α-th canonical projection, πα, of
Aλ onto A. Using the α-th projection, ηα, of

∏

α<λEα onto Eα and the
pushout property, we get ϕ ∈ HomR(Xα, Eα) making the lower left square
commutative.

Since Im(f) = Ker(g), Im(h) + Ker(g) = Xα, and gh = σα(
∏

ρα)τ =
ραηατ = ραϕh, we infer that also the lower right square is commutative.
This means that the third and fourth rows are equivalent as extensions of
A by B.

Consider the long exact sequence

0 → HomR(B,A) → HomR(C,A) → HomR(Aλ, A)
δ
→

Ext1R(B,A) → Ext1R(C,A)
Ext1R(µ,A)

→ Ext1R(Aλ, A) = 0

induced by ExtiR(−, A). Since equivalence classes of the extensions
Eα (α < λ) generate Ext1R(B,A), the commutative diagram constructed
above shows that the connecting S-homomorphism δ is surjective. Hence,
the S-homomorphism Ext1R(µ,A) is a monomorphism. This proves that
Ext1R(C,A) = 0.

Corollary 4.13 Let C be a cotilting module. For each module M there are
a cardinal λ, a module C ′ ∈ Cogen(C), and an exact sequence 0 −→ Cλ −→
C ′ −→M −→ 0.

Proof. By Lemma 4.12 for A = C, S = Z and B = M .

The exact sequence from Corollary 4.13 is called the C-torsion-free res-
olution of M , cf. [18].

Dual results to Lemma 4.12 and Corollary 4.13 hold true for arbitrary
tilting modules T , cf. [19], [44] - in particular, each module has a T -torsion
resolution. In fact, these are easy consequences of Theorem 2.2.

Now, we may characterize the cotilting torsion-free classes:
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Theorem 4.14 Let F be a pretorsion-free class of modules. Let W be an
injective cogenerator for Mod-R. Then the following are equivalent:

1. F is a cotilting torsion-free class;

2. F is a special precover class;

3. W has a special F-precover.

Proof. 1. implies 2.: We have F = Cogen(C) for a cotilting module C.
Let M be a module. Then the C-torsion-free resolution of M from Corollary
4.13 is a special F-precover of M .

2. implies 3.: Trivial.
3. implies 1.: Let 0 −→ C1 −→ C2 −→ W −→ 0 be a special T -precover

of W . A dual proof to that of Theorem 4.4 shows that C = C1 ⊕ C2 is a
cotilting module such that Cogen(C) = C.

Corollary 4.15 A pretorsion-free class F is a cotilting torsion-free class iff
F = ⊥C for a splitter C.

Proof. The direct implication follows from Lemma 4.11. Conversely,
since F is closed under products, we have Ext1R(Cλ, C) = 0, and Lemma
4.12 implies that each module has a special F-precover. So F is cotilting by
Theorem 4.14.

By Theorem 4.14, if C is a tilting module then (Cogen(C),Cogen(C)⊥)
is a complete cotorsion theory generated by C. There is a description of the
class Cogen(C)⊥ dual to the one given in Theorem 4.6:

Theorem 4.16 Let R be a ring and C be a cotilting module. Let 0 →
C2 → C1 → W → 0 be a short exact sequence with C1, C2 ∈ Prod(C) and
W an injective cogenerator for Mod-R. Denote by YC the class of all direct
summands of the modules Y such that there exist cardinals κ, λ, and an
exact sequence 0 → Cλ2 → Y →W κ → 0.

Then YC = (⊥C)⊥, so the cotorsion theory generated by C is GC =
(Cogen(C),YC). Moreover, KGC

= Prod(C) ⊆ YC ⊆ I1 ∩ Prod(C)⊥.

Proof. Dual to the proof of Theorem 4.6, using Lemma 4.11 in place of
Lemma 4.2.

There is a way of constructing cotilting modules from the tilting ones.
The idea comes from the finite dimensional case:

Example 4.17 Let R be a finite dimensional k-algebra over a field k. Let
be T a finite dimensional tilting module. Then the k-vector space dual
T ∗ = Homk(T, k) is a cotilting left R-module. Indeed, the only non-trivial
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verification is for condition 4.10.2 for κ ≥ ω: one proves that (T ∗)κ ∈
Add(T ∗) which follows for example from the fact that the endomorphism
ring S = End(RT

∗) is left coherent and right perfect and T ∗ is a finitely
presented right S-module, cf. [37].

We have a similar result for arbitrary commutative rings and arbitrary
dual modules:

Lemma 4.18 Let R be a commutative ring and T be a tilting module. Let
T ∗ be a dual module of T . Then T ∗ is cotilting iff (T (κ))∗∗ ∈ Gen(T ) for
each cardinal κ.

Proof. Since T ∈ P1, we have T ∗ ∈ I1. From the short exact sequence
0 → R → T1 → T2 → 0 with T1, T2 ∈ Add(T ) we get 0 → T ∗

2 → T ∗
1 →

R∗ → 0 with T ∗
1 , T

∗
2 ∈ Prod(T ∗). Note that R∗ is an injective cogenerator

for Mod-R. It follows that T ∗ is cotilting iff Ext1R((T ∗)κ, T ∗) = 0 for all
cardinals κ. Applying [12, VI.5.1], we have

Ext1R((T ∗)κ, T ∗) = 0 iff TorR1 ((T ∗)κ, T ) = 0 iff TorR1 (T, (T ∗)κ) = 0

iff TorR1 (T, (T (κ))∗) = 0 iff Ext1R(T, (T (κ))∗∗) = 0.

We will finish by an explicit construction of cotilting modules over com-
mutative rings following [45]. First, we recall some relations between mod-
ules and their duals:

Lemma 4.19 Let R be an S-algebra and M be a module.

1. M is flat iff M∗ is injective;

2. Let I be a right ideal. Let M be a left R-module. Then M is I-torsion-
free iff M∗ is I-divisible. In particular, M ∈ T F iff M∗ ∈ DI.

3. Let I be a right ideal of R such that I has a projective resolution con-
sisting of finitely generated projective modules. Then M is I-divisible
iff M∗ is I-torsion-free. If R is a domain then M ∈ DI iff M∗ ∈ T F .

4. Assume R is right coherent. Then M is I-divisible for all finitely
generated ideals I iff M∗ is flat.

Proof. 1. and 2. are well-known (cf. [12, VI.5.1]).
3. and 4. M is I-divisible iff Ext1R(R/I,M)) = 0 iff TorR1 (R/I,M∗) = 0,

by [12, Remark VI.5.3]. 4. now follows from the Flat Test Lemma [2].
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Theorem 4.20 Let R be a commutative ring. Let I be a set of finitely
generated projective ideals of R. Denote by TI the class of all modules which
are I-divisible for all I ∈ I, and by FI the class of all modules which are
I-torsion-free for all I ∈ I. Then M∗ ∈ TI iff M ∈ FI , for each module M .

Moreover, TI is a tilting torsion class and FI is a cotilting torsion-free
class closed under direct limits. Denote by T a tilting module generating TI .

Then each module has a special TI-preenvelope, a YT ∗-envelope, a special
XT -precover, and an FI-cover.

Proof. Put N = ⊕I∈IR/I. Then TI = N⊥, so each module has a
special TI -preenvelope. Since N has projective dimension ≤ 1, N⊥ is closed
under homomorphic images. Since each I ∈ I is finitely generated, N⊥ is
closed under direct sums. By Theorem 4.4, N⊥ is a tilting torsion class.

Let T be a tilting module with Gen(T ) = TI . By Lemma 4.18 and
by parts 2. and 3. of Lemma 4.19, T ∗ is a cotilting module. By Theorem
2.8, every module has a Cogen(T ∗)-cover. Finally, for each module M ,
Ext1R(T,M∗) = 0 iff TorR1 (T,M) = 0 iff TorR1 (M,T ) = 0 iff Ext1R(M,T ∗) = 0
by [12, VI.5.1]. It follows that M∗ ∈ TI iff M ∈ Cogen(T ∗). So Cogen(T ∗) =
FI by Lemma 4.19.2.

Corollary 4.21 Let R be a domain. Let δ be the Fuchs’ divisible module.
Let I be the set of all finitely generated projective ideals of R. Then δ∗ is
a cotilting torsion-free module, TI = Gen(δ) = DI, FI = Cogen(δ∗) = T F
and Yδ∗ = WC. The kernel KGδ∗

is the class of all torsion-free pure-injective
modules of injective dimension ≤ 1. If R is a Prüfer domain then Xδ = P1.

Proof. By [29, II.2.2], TI is the class of all divisible modules. The rest
follows by Theorem 4.20 and Examples 3.2 and 4.7.

There is an immediate corollary for Dedekind domains (cf. Example 4.3):

Corollary 4.22 Let R be a Dedekind domain. Let P be a set of maximal
ideals of R. Denote by TP the class of all modules which are I-divisible for
all I ∈ P , and by FP the class of all modules which are I-torsion-free for all
I ∈ P . Then TP is a tilting torsion class, and FP is a cotilting torsion-free
class. Every module has a special TP -preenvelope and an FP -cover.

In fact, if R is a Dedeekind domain then the torsion-free classes of the
form FP for a set of maximal ideals P are the only cotilting torsion-free
classes closed under arbitrary direct limits. Moreover, FP = Cogen(CP ),
where CP =

⊕

p/∈P E(R/P ) ⊕
∏

p∈P R̂p, where R̂p denotes the completion
of the localization of R at p, cf. [23].

There are many other aspects of the tilting and cotilting theory not even
mentioned in theses notes: the endo-structure of the tilting/cotilting mod-
ules, their various finite and partial versions etc. For example, [3] contains
a recent treatment of these aspects.
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5 Open problems

1. Characterize the modules M such that ⊥M is a special precover class.
By Theorem 2.8, these include all pure-injective modules. Assuming V

= L, these include all modules over any right hereditary ring, cf. Example
2.4. In particular: Is ⊥Z (= the class of all Whitehead groups) a special
precover class (in ZFC)?

2. Are all cotilting modules pure-injective?
This is of course true of the cotilting modules produced by a duality

as in Lemma 4.18, and in fact of all known examples of cotilting modules.
Angeleri-Hügel, Mantese and Tonolo proved that a cotilting module C is
pure-injective iff Cogen(C) is closed under arbitrary direct limits.

3. Let R be a domain. When is ⊥MC a cover class?
This is true when R is a Dedekind domain, since then ⊥MC = FL.

Otherwise, P0 (⊥ MC ( FL, so ⊥MC is not closed under arbitrary direct
limits. Note that (⊥MC,MC) is just the complete cotorsion theory cogen-
erated by Q, so ⊥MC is always a special precover class by Theorem 2.2.
Moreover, MC is an envelope class by Example 3.2. The elements of ⊥MC
are called strongly flat, [45].

4. Let T be a tilting module. When is Gen(T ) an envelope class?
This is true if Gen(T ) = C⊥ where C is closed under extensions and

arbitrary direct limits and T ∈ C, by the existence of T -torsion resolutions
and by Theorem 1.14. Proposition 4.8 shows that Gen(T ) may not be an
envelope class in general.
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[5] L. Angeleri Hügel, A. Tonolo and J. Trlifaj, Tilting preenvelopes

and cotilting precovers, to appear in Algebras and Repres. Theory 3 (2000).

[6] I. Assem, Tilting theory - an introduction, Topics in Algebra 26 (1990),
127–180.

36



[7] M.Auslander and I.Reiten, Applications of contravariantly finite sub-

categories, Adv.Math. 86, (1991), 111–152.

[8] M. Auslander, S. O. Smalø, Preprojective modules over artin algebras,
J. Algebra 66 (1980), 61-122.

[9] L. Bican, R. El Bashir and E. Enochs, All modules have flat covers,
to appear in Bull. London Math. Soc. (2000).

[10] K. Bongartz, Tilted algebras, in Proc. ICRA III, LNM 903, Springer
(1981), 26-38.

[11] S.Brenner and M.Butler, Generalizations of the Bernstein-Gelfand-

Ponomarev reflection functors, Proc. ICRA II, LNM vol. 832, Springer
(1980), 103–169.

[12] H.Cartan and S.Eilenberg, Homological Algebra, Princeton Univ.
Press, Princeton, 1956.

[13] R.R.Colby and K.R.Fuller, Tilting and torsion theory counter-

equivalences, Comm. Algebra 23, (1995), 4833–4849.

[14] R.Colpi, Tilting in Grothendieck categories, Forum Math. 11, (1999),
735–759.

[15] R.Colpi, Cotilting bimodules and their dualities, Proc. Euroconf. Mur-
cia’98, LNPAM 210, M. Dekker, New York 2000, 81-93.

[16] R.Colpi, G.D’Este and A.Tonolo, Quasi-tilting modules and counter

equivalences, J.Algebra 191, (1997), 461-494.

[17] R. Colpi and K.R.Fuller, Cotilting modules and bimodules, Pacific J.
Math. 192, (2000), 275–291.

[18] R.Colpi, A.Tonolo and J.Trlifaj, Partial cotilting modules and the

lattices induced by them, Comm. Algebra 25, (1997), 3225–3237.

[19] R.Colpi and J.Trlifaj, Tilting modules and tilting torsion theories,
J.Algebra 178, (1995), 614–634.

[20] P. Eklof and S. Shelah, On Whitehead modules, J. Algebra 142,
(1991), 492-510.

[21] P. Eklof and S. Shelah, On Whitehead precovers, preprint.

[22] P. Eklof and J. Trlifaj, How to make Ext vanish, Bull. London Math.
Soc. 23 (2000), to appear.

[23] P. Eklof and J. Trlifaj, Covers induced by Ext, J. Algebra 2000, to
appear.

[24] R. El Bashir, Covers and directed colimits, preprint.

[25] E. Enochs, Torsion free covering modules, Proc. Amer. Math. Soc. 14

(1963), 884-889.

[26] E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J.
Math. 39 (1981), 33-38.

37



[27] E. Enochs and L. Oyonarte, Flat covers and cotorsion envelopes of

sheaves, preprint.

[28] A. Facchini, A tilting module over commutative integral domains, Comm.
Algebra 15 (1987), 2235-2250.

[29] L. Fuchs and L. Salce, Modules over Valuation Domains, LNPAM 96,
M.Dekker, New York 1985.
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