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Introduction

Classical tilting theory originated in the representation theory of finite dimen-
sional algebras, as one of the basic tools for investigation of finite dimensional
modules over algebras close to the hereditary ones. In the more general setting
of modules over associative rings, tilting theory is primarily a far reaching gen-
eralization of the Morita theory of equivalence of module categories. Though
many of the classical results require the tilting modules to be finitely gener-
ated, there are some that have extensions to infinite dimensional modules, and
provide for unexpected new applications.

Many of these new results are related to approximation theory of modules.
This theory attempts to study arbitrary modules by a two step procedure: first,
one selects a class of modules C that is well–understood, and then tries to
approximate arbitrary modules by describing their approximations (envelopes
or covers) in C. Approximation theory originated in the works of Baer and
Eckmann on injective hulls, and Bass on projective covers, but there are much
more recent contributions, for example the Enochs and Xu theory of flat covers
of modules. In fact, there is now a general theory available giving existence of
numerous other approximations arising from so called complete cotorsion pairs.

Tilting approximations in projective dimension one are exactly the special
approximations given by torsion classes of modules. Here the representing tilting
modules are not finitely generated in general. Indeed, in many cases (e.g., for
Dedekind domains), there exist no non–trivial finitely generated tilting modules.
Moreover, infinite dimensional tilting modules arise naturally even in the setting
of finite dimensional hereditary algebras as shown by the examples of Ringel and
Lukas tilting modules.

The case of n–tilting modules and classes is more complex, but even here,
there is a hidden finiteness condition: each tilting module is of finite type. In
particular, the corresponding tilting class is definable in the language of the
first order theory of modules. This result was obtained gradually in a series of
recent papers in 2003–6, and enabled explicit classification of tilting modules
and classes over many rings.

Infinite dimensional tilting modules have interesting applications. For ex-
ample, they are employed in the proof of the following result of decomposition
theory: given a commutative ring R and a multiplicative set S consisting of
(some) non–zero–divisors of R, the localization S−1R has projective dimension
≤ 1 (i.e., S−1R is a Matlis localization), iff the R–module S−1R/R decomposes
into a direct sum of countably presented modules.

Infinite dimensional tilting modules also come up naturally in the study of
finitistic dimensions of rings and algebras. Using them, one can prove the Bass
finitistic dimension conjectures for all artin algebras with P<ω contravariantly
finite, and for all (non–commutative) Iwanaga–Gorenstein rings.
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The lecture notes are divided into five chapters. The first one introduces
fundamentals of the approximation theory of modules using complete cotorsion
pairs as the basic tool. The second deals with deconstruction of cotorsion pairs,
which is a method for proving completeness. Here, some new techniques of
set–theoretic homological algebra are presented that are interesting on its own
(notably, a general version of the Hill lemma).

The third chapter concerns tilting and cotilting modules and proves the
finite type result mentioned above. This result makes it possible to classify
tilting and cotilting modules in various cases: here we consider in detail the
case of Dedekind domains. The final two chapters are dedicated to applications
to the structure of Matlis localizations, and to the proof of the Bass finitistic
dimension conjectures in the two cases mentioned above.

The lecture notes are based on several recent papers. The lack of space does
not allow for a more complete presentation, though we believe that the main
ideas are covered here. For more details, and many other related results, we
refer to the forthcoming monograph [46].
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1 Approximations and cotorsion pairs

In this chapter, we introduce approximation theory as a tool for studying mod-
ules over general associative rings with unit. We also introduce the notion of a
cotorsion pair which connects left and right approximations in a natural way.
Then we consider existence of minimal approximations, and show that there is
always a rich supply of approximations available. All these results will later on
serve for the structure theory of infinite dimensional tilting modules, and for its
applications.

Let R be a ring, M is a (right R–) module, and C ⊆ Mod–R a class of
modules closed under isomorphic images and direct summands.

Definition 1.1. A map f ∈ HomR(M,C) with C ∈ C is a C–preenvelope of
M , provided the abelian group homomorphism HomR(f, C ′) : HomR(C,C ′) →
HomR(M,C ′) is surjective for each C ′ ∈ C. That is, for each homomorphism
f ′ : M → C ′ there is a homomorphism g : C → C ′ such that f ′ = gf :
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(Note that we require the existence, but not the uniqueness, of the map g.)
The C–preenvelope f is a C–envelope of M provided that f is left minimal, that
is, provided f = gf implies g is an automorphism for each g ∈ EndR(C).

Example 1.2. The embedding M →֒ E(M) of a module into its injective hull
is easily seen to be the I0–envelope of a module M . Similarly, the embedding
M →֒ PE(M) of a module into its pure–injective hull is the PI–envelope of M .
(Here, PI denotes the class of all pure–injective modules and, for each n < ω,
In denotes the class of all modules of injective dimension ≤ n. Moreover, we
define I =

⋃
n<ω In)

Clearly, a C–envelope of M is unique in the following sense: if f : M → C
and f ′ : M → C ′ are C–envelopes of M , then there is an isomorphism g : C → C ′

such that f ′ = gf .
In general a module M may have many non–isomorphic C–preenvelopes, but

no C–envelope. Nevertheless, if the C–envelope exists, its minimality implies
that it is isomorphic to a direct summand in each C–preenvelope of M :

Lemma 1.3. Let f : M → C be a C–envelope and f ′ : M → C ′ a C–preenvelope
of a module M . Then

(a) C ′ = D ⊕ D′, where Im f ′ ⊆ D and f ′ : M → D is a C–envelope of M ;

(b) f ′ is a C–envelope of M , iff C ′ has no proper direct summands containing
Im f ′.

Proof. (a) By definition there are homomorphisms g : C → C ′ and g′ :
C ′ → C such that f ′ = gf and g′g is an automorphism of C. So D = Im g ∼= C
is a direct summand in C ′ containing Im f ′, and the assertion follows.
(b) by part (a).
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Definition 1.4. A class C ⊆ Mod–R is a preenveloping class (enveloping class)
provided that each module has a C–preenvelope (C–envelope).

For example, the classes I0 and PI from Example 1.2 are enveloping classes
of modules.

It is easy to define the dual notions:

Definition 1.5. A map f ∈ HomR(C,M) with C ∈ C is a C–precover of M , pro-
vided the group homomorphism HomR(C ′, f) : HomR(C ′, C) → HomR(C ′,M)
is surjective for each C ′ ∈ C.
A C–precover f ∈ HomR(C,M) of M is called a C–coverof M , provided that f
is right minimal, that is, provided fg = f implies that g is an automorphism
for each g ∈ EndR(C).
C ⊆ Mod–R is a precovering class (covering class) provided that each module
has a C–precover (C–cover).

C–preenvelopes and C–precovers are also called left and right approximations.
If Mod–R is replaced by its subcategory mod–R in the definitions above,

then preenveloping and precovering classes are called covariantly finite and con-
travariantly finite, respectively.

Example 1.6. Each module M has a P0–precover (since each module is a
homomorphic image of a projective module). Moreover, M has a P0–cover, iff
M has a projective cover in the sense of Bass (that is, there is an epimorphism
f : P → M with P projective and Ker(f) a small submodule of P ). So P0 is
always a precovering class, and it is a covering class, iff R is a right perfect ring.
(Here, for each n < ω, Pn and Fn denotes the class of all modules of projective
and flat dimension ≤ n, respectively. Moreover, we define P =

⋃
n<ω Pn.)

C–covers may not exist in general, but if they exist, they are unique up to
isomorphism. As in Lemma 1.3, we get

Lemma 1.7. Let f : C → M be the C–cover of M . Let f ′ : C ′ → M be any
C–precover of M . Then

(a) C ′ = D ⊕ D′, where D ⊆ Ker f ′ and f ′ ↾ D′ is a C–cover of M .

(b) f ′ is a C–cover of M , iff C ′ has no non–zero direct summands contained
in Ker f ′.

The following sufficient condition for the existence of minimal approxima-
tions is due to Zimmermann:

Lemma 1.8. Let R be a ring. Let f ∈ HomR(M,C) be a C–preenvelope of
a module M . Let E = EndR(C) and I = {g ∈ E | gf = 0}. Assume that
idempotents lift modulo Rad(E), and that there exists a left ideal J of E such
that I + J = E and I ∩ J ⊆ Rad(E). Then M has a C–envelope.

Proof. For x ∈ E, put x̄ = x + Rad(E). By assumption there exist x ∈ I
and y ∈ J such that x̄ and ȳ are orthogonal idempotents in E/Rad(E) and
x̄ + ȳ = 1̄.

By assumption there is an idempotent e′ ∈ E with ē′ = ȳ. Put u = 1 −
(e′ − y). Then u is invertible in E and e′(u − y) = 0. Moreover, y′ = u−1e′u =
u−1e′y ∈ J is an idempotent such that ȳ′ = ȳ.
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Since 1 − (x + y′) ∈ Rad(E), there is some v ∈ E with v(x + y′) = 1. Put
e = y′ + (1 − y′)vy′ ∈ J . Then e is an idempotent such that 1 − e ∈ I and
I ∩ Ee ⊆ (I ∩ J)e ⊆ Rad(E)e. In particular, the left annihilator of f in the
ring eEe is contained in Rad(eEe) = eRad(E)e. Now, if g ∈ eEe is such that
gf = ef , then g is invertible in eEe. It follows that f ′ = ef ∈ HomR(M, eC) is
left minimal. Since eC ∈ C, we conclude that f ′ is a C–envelope of M .

Dually, one can prove existence of a C–cover assuming that idempotents lift
modulo Rad(E), and there exists a right ideal J of E such that I + J = E
and I ∩ J ⊆ Rad(E) where E = EndR(C), I = {g ∈ E | fg = 0}, and
f ∈ HomR(C,M) is a C–precover.

In particular, minimal versions of approximations in classes of finite length
modules always exist:

Corollary 1.9. Assume M has a C–preenvelope, f ∈ HomR(M,C), such that
EndR(C) is a semiperfect ring (for example, assume that C has finite length).
Then M has a C–envelope.

Proof. By Lemma 1.8.

Similarly, M has a C–cover provided M has a C–precover, f ∈ HomR(M,C),
such that EndR(C) is semiperfect.

Also, minimal versions of approximations always exist in classes of pure–
injective modules:

Proposition 1.10. Let R be a ring and M be a module. Let C be a class
of pure–injective modules such that C is closed under direct summands. Let
f ∈ HomR(M,C) be a C–preenvelope of M . Then there is a decomposition
C = D ⊕ E such that Im f ⊆ D and f : M → D is left minimal. In particular,
f : M → D is a C–envelope of M .

Proof. The proof uses the fact that the tensor product functor (as a functor
from the category Mod–R to the category, D(R) of all additive functors from
the category of all finitely presented left R–modules to Mod–Z) identifies pure–
injective modules with injective objects in D(R). The result then follows from
the existence of injective envelopes in D(R). For more details, see [56, Chap.7]
and [58].

The following lemma is known as the Wakamatsu Lemma (see [79, §2]).
It shows that under rather weak assumptions on the class C, C–envelopes and
C–covers are special in the sense of the following definition:

Definition 1.11. Let C ⊆ Mod–R. Define
C⊥ = Ker Ext1R(C,−) = {N ∈ Mod–R | Ext1R(C,N) = 0 for all C ∈ C}
⊥C = Ker Ext1R(−, C) = {N ∈ Mod–R | Ext1R(N,C) = 0 for all C ∈ C}.
For C = {C}, we write for short C⊥ and ⊥C in place of {C}⊥ and ⊥{C},
respectively.
Let M ∈ Mod–R. A C–preenvelope f : M → C of M is called special, provided
that f is injective and Coker f ∈ ⊥C.

So a special C–preenvelope may be viewed as an exact sequence 0 → M
f
−→

C −→ D → 0 with C ∈ C and D ∈ ⊥C.
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Dually, a C–precover f : C → M of M is called special, if f is surjective and
Ker f ∈ C⊥.

If C is a class of modules such that each module M has a special preenvelope
(special precover) then C is called special preenveloping (special precovering).

Lemma 1.12. Let M ∈ Mod–R and C ⊆ Mod–R be a class closed under
extensions.

(a) Let f : M → C be a monic C–envelope of M . Then f is special.

(b) Let f : C → M be a surjective C–cover of M . Then f is special.

Proof. (a) By assumption, there is an exact sequence

0 → M
f
−→ C

g
−→ D → 0.

In order to prove that D ∈ ⊥C, we take an arbitrary extension

0 → C ′ −→ X
h
−→ D → 0

with C ′ ∈ C. We will prove that h splits. First consider the pullback of g and
h:

0 0
y

y

C ′ C ′

y
y

0 −−−−→ M
α

−−−−→ P
β

−−−−→ X −−−−→ 0
∥∥∥ γ

y h

y

0 −−−−→ M
f

−−−−→ C
g

−−−−→ D −−−−→ 0
y

y

0 0.
Since C,C ′ ∈ C, also P ∈ C by assumption. Since f is a C–envelope of M ,

there is a homomorphism δ : C → P with α = δf . Then f = γα = γδf , so γδ
is an automorphism of C.

Define i : D → X by i(g(c)) = βδ(γδ)−1(c). This is well–defined, since

δ(γδ)−1f(m) = δf(m) = α(m).

Moreover, hig = hβδ(γδ)−1 = gγδ(γδ)−1 = g, so hi = idD and h splits.
(b) dual to (a).

The C–envelope f of a module M must be monic provided that I0 ⊆ C. This
is because M →֒ E(M) factors through f . Similarly, P0 ⊆ C implies that any
C–cover of M is surjective.

Also notice that the lemma above holds with Mod–R replaced by its sub-
category mod–R.

There is an explicit duality between special preenvelopes and special precov-
ers discovered by Salce, arising from the notion of a cotorsion pair:
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Definition 1.13. Let A,B ⊆ Mod–R. The pair (A,B) is a cotorsion pair if
A = ⊥B and B = A⊥.

Let C be a class of modules. Then C ⊆ ⊥(C⊥) as well as C ⊆ (⊥C)⊥. More-
over, GC = (⊥(C⊥), C⊥) and CC = (⊥C, (⊥C)⊥) are easily seen to be cotorsion
pairs, called the cotorsion pairs generated and cogenerated, respectively, by the
class C. (In the case when C consists of a single module C, we will simply write
⊥C and C⊥ in place of ⊥{C} and {C}⊥.)

If C = (A,B) is a cotorsion pair, then the class KC = A ∩ B is the kernel
of C. Note that each element K of the kernel is a splitter, that is, K satisfies
Ext1R(K,K) = 0.

For any ring R, the class of all cotorsion pairs of modules is denoted by LExt.
Note that in general, LExt is a proper class (see [45]).

LExt is partially ordered by the inclusion of the first components of cotorsion
pairs. The largest element of LExt is GMod–R = (Mod–R, I0), while the least
is CMod–R = (P0,Mod–R).

Cotorsion pairs are analogs of the classical (non–hereditary) torsion pairs,
where Hom (= Ext0 ) is replaced by Ext1. Similarly, we define Tor–pairs: For
a class of (right resp. left) R–modules, C, we put

C⊺ = Ker TorR
1 (C,−) = {N ∈ R–Mod | TorR

1 (C,N) = 0 for all C ∈ C},

resp.
⊺C = Ker TorR

1 (−, C) = {N ∈ Mod–R | TorR
1 (N,C) = 0 for all C ∈ C}.

(A,B) is called a Tor–pair, if A = ⊺B and B = A⊺. In this case both A and
B are closed under direct limits, since Tor commutes with direct limits. (For
simplicity, we will write A⊺ and ⊺B rather than {A}⊺ and ⊺{B} for A ∈ Mod–R
and B ∈ R–Mod.)

The set of all Tor–pairs is denoted by LTor (That LTor is always a set, not
a proper class, is proved in Corollary 1.53 below). LTor is partially ordered by
inclusion in the first components. The least element of LTor is (FL,Mod–R),
the largest (Mod–R,FL), where FL = F0 denotes the class of all flat modules.

The interesting fact is that LTor can canonically be embedded into LExt.
This follows from the Ext–Tor–relations of the classical homological algebra:

Lemma 1.14. Let R be a ring and (A,B) be a Tor–pair. Then D = (A,A⊥)
is a cotorsion pair. Moreover, D = CC, where C = {Bc | B ∈ B} ⊆ PI.

Proof. The statement follows from the well-known isomorphism

Ext1R(A,Bc) ∼= (TorR
1 (A,B))c,

where Bc denotes the character module of a left R–module B.

Another reason for investigating Tor–pairs is in their relation to closures of
classes of modules under forming direct limits (see Theorem 2.61 below).

Let us consider further examples of cotorsion pairs:

Example 1.15.

(i) Consider the case of Lemma 1.14, when A = FL and B = Mod–R. Then
(FL, EC) is a cotorsion pair, the so–called Enochs cotorsion pair. Here
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EC = FL⊥ is the class of all Enochs cotorsion modules. By Lemma 1.14,
any character module and hence any pure–injective module, is Enochs
cotorsion. That is, PI ⊆ EC.

(ii) Another case of interest is when A = T F , where T F = ⊺S, and S is a
representative set of all cyclically presented left R–modules. (Recall that
a left R–module M is cyclically presented provided that M ∼= R/Rr for
some r ∈ R.) The elements of T F are the torsion–free modules. (In the
particular case, when R is a domain, M ∈ T F , iff mr 6= 0 for all m 6= 0
and r 6= 0, that is, M is torsion–free in the usual sense.) By Lemma 1.14,
(T F ,RC) is a cotorsion pair, the so–called Warfield cotorsion pair. Here
RC = T F⊥ is the class of all Warfield cotorsion modules.

(iii) Let R be a domain and Q be its quotient field. The cotorsion pair gener-
ated by Q is called the Matlis cotorsion pair. We will have more on this
in chapters 2 and 4.

(iv) A module M ∈ Mod–R is a Whitehead module provided Ext1R(M,R) = 0.
The class of all Whitehead modules is denoted by W1. The corresponding
cotorsion pair (cogenerated by R) is denoted by W1 and called the White-
head cotorsion pair. By [35] and [75], some of the basic properties of this
cotorsion pair depend on the extension of ZFC that we work in.

Clearly, P0 ⊆ FL ⊆ T F , so I0 ⊆ RC ⊆ EC for any ring R.

We turn to approximations induced by cotorsion pairs. First we have an
immediate corollary of Lemma 1.12.

Corollary 1.16. Let R be a ring and (A,B) be a cotorsion pair. If A is cov-
ering, then A is special precovering, and if B is enveloping, then B is special
preenveloping.

The mutually dual categorical notions of a special precover and a special
preenvelope are tied up by the homological tie of a cotorsion pair. In a sense,
this fact is a remedy for the non–existence of a duality involving the category
of all modules over a ring.

Lemma 1.17. Let R be a ring and C = (A,B) be a cotorsion pair of modules.
Then the following are equivalent:

(a) Each module has a special A–precover.

(b) Each module has a special B–preenvelope.

In this case, the cotorsion pair C is called complete.

Proof. (a) implies (b): let M ∈ Mod–R. There is an exact sequence

0 → M −→ I
π
−→ F → 0,

where I is injective. By assumption, there is a special A–precover ρ of F

0 → B −→ A
ρ
−→ F → 0.
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Consider the pullback of π and ρ:

0 0
y

y

M M
y

y

0 −−−−→ B −−−−→ P −−−−→ I −−−−→ 0
∥∥∥ γ

y π

y

0 −−−−→ B −−−−→ A
ρ

−−−−→ F −−−−→ 0
y

y

0 0.

Since B, I ∈ B, also P ∈ B. So the left–hand vertical exact sequence is a special
B–preenvelope of M .

(b) implies (a): by a dual argument.

Lemma 1.17 also holds true when restricted to finitely generated modules
provided that injective envelopes of finitely generated modules are finitely gen-
erated (when R is an artin algebra, for example).

There is another case when cotorsion pairs tie up dual notions. First we
introduce the needed setting:

For a module M , let

P : . . .
fn+1

−−−−→ Pn
fn

−−−−→ Pn−1
fn−1

−−−−→ . . .
f1

−−−−→ P0
f0

−−−−→ M −−−−→ 0

be a projective resolution of M . For each i < ω, the module Im fi is called the
i–th syzygy of M in P. We denote by Ωi(M) the class of all the i–th syzygies
occurring in all projective resolutions of M .

Let m ≥ 0. We will say that M is FPm, provided that M has a projective
resolution P such that Pn is finitely generated for each n ≤ m. Obviously, M
is FP0, iff M is finitely generated, and M is FP1, iff M is finitely presented.
We will often deal with FP2–modules: these are the modules isomorphic to
P/F , where P is finitely generated and projective, and F is a finitely presented
submodule of P .

Note that if R is a right coherent ring and M is finitely presented, then M
is FPn for all n ≥ 0. If R is right coherent and M is finitely presented, then we
will consider only projective resolutions consisting of finitely presented modules
– in particular, all syzygies of M will be finitely presented.

For any ring R, we denote by mod–R the class of all modules possessing a
projective resolution consisting of finitely generated modules. (mod–R coincides
with the class of all modules M that are FPm for all m < ω — see [29, VIII.4]).

Given an injective coresolution of M ,

I : 0 −−−−→ M
g0

−−−−→ I0
g1

−−−−→ . . .
gn−1

−−−−→ In
gn

−−−−→ In+1
gn+1

−−−−→ . . . ,

the module Im gi is called the i–th cosyzygy of M in I. We will denote by Ω−i(M)
the class of all the i–th cosyzygies occurring in all injective coresolutions of M .
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Let C ⊆ Mod–R. For an integer i, define Ωi(C) =
⋃

M∈C Ωi(M).

We will often use the so called dimension shifting, that is, the computation
of the Ext–groups using syzygies and/or cosyzygies of modules as follows:

Extn
R(M,N) ∼= Ext1R(Ωn−1(M), N) ∼= Ext1R(M,Ω−n+1(N))

for all M,N ∈ Mod–R and n ≥ 1. Similarly,

TorR
n (M,N) ∼= TorR

1 (Ωn−1(M), N) ∼= TorR
1 (M,Ωn−1(N))

for all M ∈ Mod–R, N ∈ R–Mod and n ≥ 1.

Definition 1.18. Let R be a ring and C be a class of modules.

(i) C is resolving, provided that C is closed under extensions, P0 ⊆ C, and
A ∈ C, whenever 0 → A −→ B −→ C → 0 is a short exact sequence such
that B,C ∈ C.

(ii) C is coresolving, provided that C is closed under extensions, I0 ⊆ C, and
C ∈ C, whenever 0 → A −→ B −→ C → 0 is a short exact sequence such
that A,B ∈ C.

(iii) C is syzygy closed, provided that Ω1(C) ⊆ C (and hence Ωi(C) ⊆ C for all
i < ω).

(iv) C is cosyzygy closed, provided that Ω−1(C) ⊆ C (and hence Ω−i(C) ⊆ C for
all i < ω).

(v) Let 1 ≤ n < ω. Define

C⊥n = Ker Extn
R(C,−) = {N ∈ Mod–R | Extn

R(C,N) = 0 ∀C ∈ C},
⊥nC = Ker Extn

R(−, C) = {N ∈ Mod–R | Extn
R(N,C) = 0 ∀C ∈ C}.

In particular, C⊥1 = C⊥ and ⊥1C = ⊥C. Moreover, we define

C⊥∞ =
⋂

1≤n<ω C⊥n ,

⊥∞C =
⋂

1≤n<ω
⊥nC.

We record a couple of easy properties of the notions defined above:

Lemma 1.19. Let R be a ring and C be a class of modules.

(a) The class ⊥∞C is resolving, and C⊥∞ coresolving.

(b) Any resolving class is syzygy closed; any coresolving class is cosyzygy
closed.

(c) Let i < ω. If C is syzygy closed, then so is Ωi(C). If C is cosyzygy closed,
then so is Ω−i(C).

(d) Let k < i < ω. Then C⊥i = (Ωk(C))⊥i−k and ⊥iC = ⊥i−k(Ω−k(C)).

For example, the classes P0 and FL are always resolving. T F is resolving,
provided that TorR

1 (M,Rr) = 0 for each r ∈ R and each torsion–free module
M . In particular, T F is resolving when R is a commutative domain.
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Lemma 1.20. Let R be a ring and C = (A,B) be a cotorsion pair. Then the
following assertions are equivalent:

(a) A is resolving;

(b) B is coresolving;

(c) Exti
R(A,B) = 0 for all i ≥ 1, A ∈ A and B ∈ B.

In this case, the cotorsion pair C is called hereditary.

Proof. (a) implies (c) and (b): let 0 → C −→ P −→ A → 0 be an exact
sequence with A ∈ A and P ∈ P0. By the premise, C ∈ A. Let B ∈ B. Applying
HomR(−, B), we get the exact sequence 0 = Ext1R(C,B) → Ext2R(A,B) →
Ext2R(P,B) = 0. By induction, we get (c).

In order to prove (b), we take an exact sequence 0 → E −→ F −→ G → 0
with E,F ∈ B. Consider A ∈ A. Applying HomR(A,−), we get the exact
sequence 0 = Ext1R(A,F ) → Ext1R(A,G) → Ext2R(A,E) = 0. This proves that
G ∈ A⊥ = B.

(b) implies (c): by a dual argument.
(c) implies (a): let 0 → E −→ D −→ C → 0 be an exact sequence of modules

such that C,D ∈ A. Take B ∈ B and apply HomR(−, B). Then the sequence
0 = Ext1R(D,B) → Ext1R(E,B) → Ext2R(C,B) = 0 is exact, whence E ∈ A.

An easy consequence of the two lemmas above says that in certain cases we
need not distinguish between ⊥ and ⊥∞:

Corollary 1.21. Let R be a ring and C be a class of modules.

(a) Assume that C is syzygy closed. Then C⊥ = C⊥∞ is coresolving and
⊥(C⊥) = ⊥∞(C⊥∞) is resolving. The cotorsion pair generated by C is
hereditary.

(b) Assume that C is cosyzygy closed. Then ⊥C = ⊥∞C is resolving and
(⊥C)⊥ = (⊥∞C)⊥∞ is coresolving. The cotorsion pair cogenerated by C
is hereditary.

In the sequel, we will prove that almost all cotorsion pairs are complete, so
they provide for approximations. In some cases minimal approximations exist,
that is, the cotorsion pairs are perfect in the sense of the following definition:

Definition 1.22. Let R be a ring, and C = (A,B) be a cotorsion pair.

(i) C is called perfect, provided that A is a covering class and B is an envelop-
ing class.

(ii) C is called closed, provided that A = lim
−→

A, that is, the class A is closed
under forming direct limits.

The term “perfect” comes from the classical result of Bass characterizing
right perfect rings by the property that the cotorsion pair P0 = (P0,Mod–R)
is perfect (cf. [2, §28]).
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Clearly, any perfect cotorsion pair is complete. The converse fails in general:
for example, P0 is complete for any ring. Numerous examples of perfect and/or
complete cotorsion pairs will appear in the sequel.

In order to prove the existence of minimal approximations, we will often use
the following version of a result due to Enochs and Xu [79, §2.2]:

Theorem 1.23. Let R be a ring and M be a module. Let C be a class of
modules closed under extensions and direct limits. Assume that M has a special
C⊥–preenvelope ν with Coker ν ∈ C. Then M has a C⊥–envelope.

Proof. By an ad hoc notation, we will call an exact sequence 0 → M −→
F −→ C → 0 with C ∈ C an Ext–generator, provided that for each exact sequence
0 → M −→ F ′ −→ C ′ → 0 with C ′ ∈ C there exist f ∈ HomR(F ′, F ) and
g ∈ HomR(C ′, C) such that the diagram

0 −−−−→ M −−−−→ F ′ −−−−→ C ′ −−−−→ 0
∥∥∥ f

y g

y

0 −−−−→ M −−−−→ F −−−−→ C −−−−→ 0

is commutative. By assumption, there exists an Ext–generator with the middle
term F ∈ C⊥. The proof is divided into three steps:

Lemma 1.24. Assume 0 → M −→ F −→ C → 0 is an Ext–generator. Then there
exist an Ext–generator 0 → M −→ F ′ −→ C ′ → 0 and a commutative diagram

0 −−−−→ M −−−−→ F −−−−→ C −−−−→ 0
∥∥∥ f

y g

y

0 −−−−→ M −−−−→ F ′ −−−−→ C ′ −−−−→ 0

such that Ker(f) = Ker(f ′f) holds in any commutative diagram whose rows are
Ext–generators:

0 −−−−→ M −−−−→ F −−−−→ C −−−−→ 0
∥∥∥ f

y g

y

0 −−−−→ M −−−−→ F ′ −−−−→ C ′ −−−−→ 0
∥∥∥ f ′

y g′

y

0 −−−−→ M −−−−→ F ′′ −−−−→ C ′′ −−−−→ 0.

Proof. Assume that the assertion does not hold. By induction, we will
construct a direct system of Ext–generators indexed by ordinals as follows:
First let the second row be the same as the first one, that is, put F ′ = F0 = F ,
C ′ = C0 = C, f = idF and g = idC . Then there exist F1 = F ′′, C1 = C ′′,
f10 = f ′ and g10 = g′ such that the diagram above commutes, its rows are
Ext–generators and Ker f10 ) Ker f = 0.

Assume that the Ext–generator 0 → M −→ Fα −→ Cα → 0 is defined together
with fαβ ∈ HomR(Fβ , Fα) and gαβ ∈ HomR(Cβ , Cα) for all β ≤ α. Then there
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exist Fα+1, Cα+1 ∈ C, fα+1,α and gα+1,α such that the diagram

0 −−−−→ M −−−−→ Fα −−−−→ Cα −−−−→ 0
∥∥∥ fα+1,α

y gα+1,α

y

0 −−−−→ M −−−−→ Fα+1 −−−−→ Cα+1 −−−−→ 0

commutes, its rows are Ext–generators and Ker fα+1,0 ) Ker fα0, where fα+1,β =
fα+1,αfαβ and gα+1,β = gα+1,αgαβ for all β ≤ α.

If α is a limit ordinal, put Fα = lim
−→β<α

Fβ and Cα = lim
−→β<α

Cβ . Consider

the direct limit 0 → M −→ Fα −→ Cα → 0 of the Ext–generators 0 → M −→
Fβ −→ Cβ → 0, (β < α). Since C is closed under direct limits, we have Cα ∈ C.
Since 0 → M −→ Fβ −→ Cβ → 0 is an Ext–generator for (some) β < α, also
0 → M −→ Fα −→ Cα → 0 is an Ext–generator.

Put fαβ = lim
−→β≤β′<α

fβ′β and gαβ = lim
−→β≤β′<α

gβ′β for all β < α. Then

Ker(fα0) ⊇ Ker(fβ0), and hence Ker(fα0) ) Ker(fβ0), for each β < α.
By induction, for each α we obtain a strictly increasing chain (Ker fβ0 | β <

α), consisting of submodules of F , a contradiction.

Lemma 1.25. Assume 0 → M −→ F −→ C → 0 is an Ext–generator. Then there
exist an Ext–generator 0 → M −→ F ′ −→ C ′ → 0 and a commutative diagram

0 −−−−→ M −−−−→ F −−−−→ C −−−−→ 0
∥∥∥ f

y g

y

0 −−−−→ M −−−−→ F ′ −−−−→ C ′ −−−−→ 0

such that Ker(f ′) = 0 in any commutative diagram whose rows are Ext–genera-
tors:

0 −−−−→ M −−−−→ F ′ −−−−→ C ′ −−−−→ 0
∥∥∥ f ′

y g′

y

0 −−−−→ M −−−−→ F ′′ −−−−→ C ′′ −−−−→ 0.

Proof. By induction on n < ω, we infer from Lemma 1.24 that there is a
countable direct system D of Ext–generators 0 → M −→ Fn −→ Cn → 0 with
homomorphisms fn+1,n ∈ HomR(Fn, Fn+1), gn+1,n ∈ HomR(Cn, Cn+1), such
that the 0–th term of D is the given Ext–generator 0 → M −→ F −→ C → 0,

0 −−−−→ M −−−−→ Fn −−−−→ Cn −−−−→ 0
∥∥∥ fn+1,n

y gn+1,n

y

0 −−−−→ M −−−−→ Fn+1 −−−−→ Cn+1 −−−−→ 0

is commutative, and for each commutative diagram

0 −−−−→ M −−−−→ Fn+1 −−−−→ Cn+1 −−−−→ 0
∥∥∥ f̄

y ḡ

y

0 −−−−→ M −−−−→ F̄ −−−−→ C̄ −−−−→ 0

whose rows are Ext–generators, we have Ker(fn+1,n) = Ker(f̄fn+1,n).
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Consider the direct limit 0 → M −→ F ′ −→ C ′ → 0 of D, so F ′ = lim
−→n<ω

Fn

and C ′ = lim
−→n<ω

Cn. Since C is closed under direct limits, we have C ′ ∈ C,

and 0 → M −→ F ′ −→ C ′ → 0 is an Ext–generator. It is easy to check that this
generator has the required injectivity property.

Lemma 1.26. Let 0 → M
ν
−→ F ′ π

−→ C ′ → 0 be the Ext–generator constructed
in Lemma 1.25. Then ν : M → F ′ is a C⊥–envelope of M .

Proof. First we prove that in each commutative diagram

0 −−−−→ M −−−−→ F ′ −−−−→ C ′ −−−−→ 0
∥∥∥ f ′

y g′

y

0 −−−−→ M −−−−→ F ′ −−−−→ C ′ −−−−→ 0

f ′ is an automorphism.
Assume this is not true. By induction, we construct a direct system of Ext–

generators, 0 → M −→ Fα −→ Cα → 0, indexed by ordinals, with injective,
but not surjective, homomorphisms fαβ ∈ HomR(Fβ , Fα) (β < α). In view of
Lemma 1.25, we take

0 → M −→ Fα −→ Cα → 0 = 0 → M
ν
−→ F ′ π

−→ C ′ → 0

in case α = 0 or α non–limit, and Fα = lim
−→

Fβ , and Cα = lim
−→

Cβ if α is a limit
ordinal. Then for each non–limit ordinal α, (Im fαβ | β non–limit, β < α) is a
strictly increasing sequence of submodules of F ′, a contradiction.

It remains to prove that F ′ ∈ C⊥. Consider an exact sequence 0 → F ′ µ
−→

X −→ C → 0, where C ∈ C. We will prove that this sequence splits.
Consider the pushout of π and µ:

0 0
y

y

0 −−−−→ M
ν

−−−−→ F ′ π
−−−−→ C ′ −−−−→ 0

∥∥∥ µ

y
y

0 −−−−→ M −−−−→ X −−−−→ P −−−−→ 0
y

y

C C
y

y

0 0.

Since C is closed under extensions, we have P ∈ C. Since 0 → M
ν
−→ F ′ π

−→ C ′ →
0 is an Ext–generator, we also have a commutative diagram

0 −−−−→ M −−−−→ X −−−−→ P −−−−→ 0
∥∥∥ µ′

y
y

0 −−−−→ M
ν

−−−−→ F ′ π
−−−−→ C ′ −−−−→ 0.
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By the first part of the proof, µ′µ is an automorphism of F ′. It follows that

0 → F ′ µ
−→ X −→ C → 0 splits.

Theorem 1.27. Let R be a ring, M be a module, and C be a class of modules
closed under direct limits. Assume that M has a C–precover. Then M has a
C–cover.

Proof. The proof is by a construction of precovers with additional injectiv-
ity properties. The three steps are analogous to Lemmas 1.24 - 1.26 (see [79,
§2.2]).

Corollary 1.28. Let C = (A,B) be a complete and closed cotorsion pair. Then
C is perfect.

Proof. By Theorems 1.23 and 1.27.

Our next goal is to show that complete cotorsion pairs are abundant. We
will prove that any cotorsion pair generated by a set of modules is complete, and
any cotorsion pair cogenerated by a class of pure–injective modules is perfect.

Definition 1.29.

(i) Let µ be an ordinal and A = (Aα | α ≤ µ) be a (well–ordered) sequence of
modules. Then A is called a continuous chain of modules provided that
A0 = 0, Aα ⊆ Aα+1 for all α < µ, and Aα =

⋃
β<α Aβ for all limit ordinals

α ≤ µ.

(ii) Let M be a module and C be a class of modules. M is C–filtered provided
that there are an ordinal κ and a continuous chain of submodules of M ,
(Mα | α ≤ κ), such that M = Mκ, and each of the modules Mα+1/Mα

(α < κ) is isomorphic to an element of C. The chain (Mα | α ≤ κ) is called
a C–filtration of M . If κ is finite, then M is said to be finitely C–filtered.

(iii) Similarly, we define continuous direct systems of exact sequences for well–
ordered direct systems of short exact sequences of modules.

For example, if C = simp R, then the C–filtered modules coincide with the
semiartinian modules, while the finitely C–filtered modules are exactly the mod-
ules of finite length.

The following lemma gives an important sufficient condition for the vanishing
of Ext.

Lemma 1.30. Let N be a module, and M be a ⊥N–filtered module. Then
M ∈ ⊥N .

Proof. Let (Mα | α ≤ κ) be a ⊥N–filtration of M . So Ext1R(M0, N) = 0
and, for each α < κ, Ext1R(Mα+1/Mα, N) = 0. We will prove Ext1R(M,N) = 0.

By induction on α ≤ κ we will prove that Ext1R(Mα, N) = 0. This is clear
for α = 0.

The exact sequence

0 = Ext1R(Mα+1/Mα, N) → Ext1R(Mα+1, N) → Ext1R(Mα, N) = 0
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proves the induction step.
Assume α ≤ κ is a limit ordinal. Let 0 → N −→ I

π
−→ I/N → 0 be an exact se-

quence with I an injective module. In order to prove that Ext1R(Mα, N) = 0, we
show that the abelian group homomorphism HomR(Mα, π) : HomR(Mα, I) →
HomR(Mα, I/N) is surjective.

Let ϕ ∈ HomR(Mα, I/N). By induction we define ψβ ∈ HomR(Mβ , I),
β < α, so that ϕ ↾ Mβ = πψβ and ψβ ↾ Mγ = ψγ for all γ < β < α.

First define M−1 = 0 and ψ−1 = 0. If ψβ is already defined, the injectiv-
ity of I yields the existence of η ∈ HomR(Mβ+1, I) such that η ↾ Mβ = ψβ .
Put δ = ϕ ↾ Mβ+1 − πη ∈ HomR(Mβ+1, I/N). Then δ ↾ Mβ = 0. Since
Ext1R(Mβ+1/Mβ , N) = 0, there is ǫ ∈ HomR(Mβ+1, I) such that ǫ ↾ Mβ = 0
and πǫ = δ. Put ψβ+1 = η + ǫ. Then ψβ+1 ↾ Mβ = ψβ and πψβ+1 = πη + δ =
ϕ ↾ Mβ+1. For a limit ordinal β < α, put ψβ =

⋃
γ<β ψγ .

Finally, put ψα =
⋃

β<α ψβ . By the construction, πψα = ϕ.
The claim is just the case of α = κ.

There is a version of Lemma 1.30 for Tor. Before proving it, we recall the
well–known relations between the functors Ext and Tor:

Lemma 1.31. Let R and S be rings and let A be a module.

(a) Let B ∈ R–Mod–S and C ∈ Mod–S. Then there is a natural (= functorial
in each variable) isomorphism

HomR(A,HomS(B,C)) ∼= HomS(A ⊗R B,C).

(b) Let n < ω, B ∈ R–Mod–S, and let C be an injective right S–module.
Then

Extn
R(A,HomS(B,C)) ∼= HomS(TorR

n (A,B), C).

(c) Assume A is finitely presented. Let B ∈ S–Mod–R and C an injective left
S–module. Then there is a natural isomorphism

A ⊗R HomS(B,C) ∼= HomS(HomR(A,B), C).

(d) Let m < ω. Assume A has a projective resolution . . . → Pn → . . . → P0 →
A → 0 such that Pi is finitely generated for each i ≤ m + 1. Moreover, let
B ∈ S–Mod–R and C an injective left S–module. Then

TorR
i (A,HomS(B,C)) ∼= HomS(Exti

R(A,B), C)

for each i ≤ m.

Corollary 1.32. Let N be a left R–module, and M be a ⊺N–filtered module.
Then M ∈ ⊺N .

Proof. By Lemmas 1.31 (b) and 1.30.

Another immediate consequence of Lemma 1.30 is

Lemma 1.33. Let n < ω and let M be a module. Assume M is Pn–filtered.
Then M ∈ Pn.
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Proof. By dimension shifting we have M ∈ Pn, iff M ∈ ⊥Sn, where Sn =
{Ωn(N) | N ∈ Mod–R}. The claim now follows from Lemma 1.30.

If M is finitely presented, then the covariant functor HomR(M,−) commutes
with direct limits. This extends to the covariant Ext functor as follows:

Lemma 1.34. Let R be a ring, n ≥ 0 and M be an FPn+1–module (for example,
let R be right coherent and M finitely presented). Let {Nα, fβα | α ≤ β ∈ I} be
a direct system of modules. Then for all i ≤ n

Exti
R(M, lim

−→
α∈I

Nα) ∼= lim
−→
α∈I

Exti
R(M,Nα) .

Proof. Well–known (see e.g. [40, §10])

There is a dual result for the contravariant Ext functors (for its proof, we
refer to [46]):

Lemma 1.35. Let R be a ring and M be a pure–injective module. Let {Nα, fβα |
α ≤ β ∈ I} be a direct system of modules. Then for each n ≥ 0,

Extn
R(lim

−→
α∈I

Nα,M) ∼= lim
←−
α∈I

Extn
R(Nα,M) .

Lemma 1.34 has an immediate corollary:

Corollary 1.36. Let R be a right noetherian ring and m < ω. Then the class
Im is closed under direct limits.

Proof. First let m = 0. By assumption, any cyclic module is finitely pre-
sented, so the Baer Criterion and Lemma 1.34 for n = 1 show that I0 is closed
under direct limits. For right noetherian rings, all syzygies of a finitely pre-
sented module can be taken finitely presented. So the result for n > 0 follows
by dimension shifting.

Now we introduce the notion of a definable class of modules:

Definition 1.37. Let C be a class of modules. Then C is definable, provided
that C is closed under direct limits, direct products and pure submodules.

The term definable comes from the fact that the modules in C are axioma-
tized by particular formulas of the first order language of the theory of modules
(see e.g. [56]).

Any definable class C is completely determined by its pure–injective ele-
ments:

Lemma 1.38. Let R be a ring, M a module and C a definable class of modules.
Then M ∈ C, iff PE(M) ∈ C.

Proof. Assume M ∈ C. Since M is elementarily equivalent to PE(M) (see
[56]), PE(M) is a direct summand in an ultrapower U of M . However, any
ultrapower is isomorphic to a direct limit of direct products of copies of M . So
U ∈ C, and hence PE(M) ∈ C.

Since M is a pure submodule in PE(M), the reverse implication is clear.
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By a result of Ziegler, any pure–injective module is elementarily equivalent to
a pure–injective hull of a direct sum of indecomposable pure–injective modules.
So definable classes are completely characterized by their indecomposable pure–
injective elements. For more on the model–theoretic and functor–categorical
approach to definable classes we refer to [34] and [56].

We will often work with the following example of a definable class:

Example 1.39. Let R be a ring and C be a class of FP2–modules. Then the
class C⊥ is definable. Indeed, since C consists of finitely presented modules, C⊥

is closed under pure submodules (and, obviously, under direct products). By
Lemma 1.34, C⊥ is closed under direct limits.

The following theorem shows that complete cotorsion pairs are abundant:

Theorem 1.40. Let S be a set of modules.

(a) Let M be a module. Then there is a short exact sequence

0 → M →֒ P → N → 0,

where P ∈ S⊥ and N is S–filtered. In particular, M →֒ P is a special
S⊥–preenvelope of M .

(b) The cotorsion pair (⊥(S⊥),S⊥) is complete.

Proof. (a) Put X =
⊕

S∈S S. Then X⊥ = S⊥. So w.l.o.g., we assume that
S consists of a single module S.

Let 0 → K
µ
−→ F −→ S → 0 be a short exact sequence with F a free module.

Let λ be an infinite regular cardinal such that K is < λ–generated.
By induction we define an increasing chain (Pα | α < λ) as follows:

First let P0 = M . For α < λ, choose the index set Iα = HomR(K,Pα). We
define µα as the direct sum of Iα copies of the homomorphism µ, i.e.

µα = µ(Iα) ∈ HomR(K(Iα), F (Iα)).

Then µα is a monomorphism, and Cokerµα is isomorphic to a direct sum
of copies of S. Let ϕα ∈ HomR(K(Iα), Pα) be the canonical morphism. Note
that for each η ∈ Iα there exist canonical embeddings νη ∈ HomR(K,K(Iα))
and ν′

η ∈ HomR(F, F (Iα)) such that η = ϕανη and ν′
ηµ = µανη.

Now Pα+1 is defined via the pushout of µα and ϕα:

K(Iα) µα
−−−−→ F (Iα)

ϕα

y ψα

y

Pα
⊆

−−−−→ Pα+1.

If α ≤ λ is a limit ordinal, we put Pα =
⋃

β<α Pβ , so the chain is continuous.
Put P =

⋃
α<λ Pα.

We will prove that ν : M →֒ P is a special S⊥–preenvelope of M .
First we prove that P ∈ S⊥. Since F is projective, we are left to show that any
ϕ ∈ HomR(K,P ) factors through µ:
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Since K is < λ–generated, there are an index α < λ and η ∈ Iα such that
ϕ(k) = η(k) for all k ∈ K. The pushout square gives ψαµα = σαϕα, where σα

denotes the inclusion of Pα into Pα+1. Altogether we have ψαν′
ηµ = ψαµανη =

σαϕανη = σαη. It follows that ϕ = ψ′µ, where ψ′ ∈ HomR(F, P ) is defined by
ψ′(f) = ψαν′

η(f) for all f ∈ F . This proves that P ∈ S⊥.

It remains to prove that N = P/M ∈ ⊥(S⊥). By construction, N is the
union of the continuous chain (Nα | α < λ), where Nα = Pα/M .

Since Pα+1/Pα is isomorphic to a direct sum of copies of S by the pushout
construction, so is Nα+1/Nα

∼= Pα+1/Pα. Since S ∈ ⊥(S⊥), Lemma 1.30 shows
that N ∈ ⊥(S⊥).

(b) follows by part (a) (cf. Lemma 1.17).

Any cotorsion pair generated by a set of modules S is also generated by
the single module M =

⊕
S∈S S. So the following corollary of Theorem 1.40

provides a characterization of the (complete) cotorsion pairs generated by sets
of modules:

Corollary 1.41. Let M be a module. Denote by ZM the class of all modules
Z such that there is an exact sequence 0 → F −→ Z −→ G → 0, where F is free
and G is {M}–filtered. Let C = (A,B) be a cotorsion pair. The following are
equivalent

(a) C is generated by M (that is, B = M⊥).

(b) A consists of all direct summands of elements of ZM (and for each A ∈ A,
there are Z ∈ ZM and C ∈ KC such that A ⊕ C ∼= Z).

Proof. (a) implies (b): by assumption, B = M⊥. Take A ∈ A and let

0 → N
µ
−→ F −→ A → 0 be a short exact sequence with F free. By Theorem

1.40 (a), there is a special B–preenvelope, ν : N →֒ C of N such that G = C/N
is {M}–filtered. Let (Gα | α ≤ λ) be an {M}–filtration of G. Consider the
pushout of µ and ν:

0 0
y

y

0 −−−−→ N
µ

−−−−→ F −−−−→ A −−−−→ 0

ν

y
y

∥∥∥

0 −−−−→ C −−−−→ Z −−−−→ A −−−−→ 0
y π

y

G G
y

y

0 0.

The second column gives Z ∈ ZM . The second row splits since C ∈ B and
A ∈ A, so A ⊕ C ∼= Z. Finally, since F,G ∈ A, we have Z ∈ A, so C ∈ KC.

(b) implies (a): by Lemma 1.30, M⊥ = A⊥ = B.
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Corollary 1.42. Let S be a set of modules containing R. Then the class ⊥(S⊥)
consists of all direct summands of S–filtered modules.

Proof. By Corollary 1.41 and Lemma 1.30.

In general, we cannot omit the term “direct summands” in Corollary 1.42.
For example, if S = {R}, then ⊥(S⊥) = P0 is the class of all projective modules
while S–filtered modules coincide with the free modules. There is, however, a
way of getting rid of direct summands on the account of enlarging the set S (see
Theorem 2.20 below).

We will see that many cotorsion pairs satisfy the equivalent conditions of
Corollary 1.41. Nevertheless, this is not always the case: it is consistent with
ZFC + GCH that there exist cotorsion pairs not generated by any set of modules
(see [37] and [75]).

Assume that S is a module satisfying Ext1R(S, S(κ)) = 0 for all cardinals κ.
Then all {S}–filtered modules are isomorphic to direct sums of copies of S. So
the short exact sequence induced by the special S⊥–preenvelope from Theorem

1.40 (a) takes the form 0 → M
⊆
−→ P −→ S(λ) → 0 for a cardinal λ. This can be

proved more directly, using an idea of Bongartz [28]:

Lemma 1.43. Let R and S be rings, A be a right R–module and B be an S–
R–bimodule. Let λ be the minimal number of generators of the right S–module
Ext1R(B,A). Assume that Ext1R(B,B(λ)) = 0. Then there exists a module C
satisfying

(a) Ext1R(B,C) = 0, and

(b) there is an exact sequence 0 → A
µ
−→ C −→ B(λ) → 0 in Mod–R.

In particular, µ is a special B⊥–preenvelope of A.

Proof. Consider a set of extensions

Eα : 0 → A −→ Eα −→ B → 0

such that the equivalence classes of all Eα (α < λ) generate Ext1R(B,A) as a
right S–module. Let

E : 0 → A −→ C
π
−→ B(λ) → 0

be the extension obtained by pushing out the direct sum extension

D : 0 → A(λ) −→ ⊕
∑

α<λ

Eα −→ B(λ) → 0

along the summation map ΣA : A(λ) → A defined by ΣA((aα | α < λ)) =∑
α<λ aα.
Consider the long exact sequence

. . . → HomR(B,A) → HomR(B,C) → HomR(B,B(λ))
δ
→ Ext1R(B,A) →

→ Ext1R(B,C)
Ext1R(B,π)

→ Ext1R(B,B(λ)) = 0 → . . .
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induced by E . Since equivalence classes of the extensions Eα generate the right
S–module Ext1R(B,A), the connecting S–homomorphism δ is surjective. So the
S–homomorphism Ext1R(B, π) is monic, and Ext1R(B,C) = 0.

Next we prove that cotorsion pairs cogenerated by classes of pure–injective
modules are complete and closed, hence they are perfect. We will follow the
approach of [39], that is, we will prove the result by an application of Theorem
1.40.

Definition 1.44. For any module A and any cardinal κ, a κ–refinement of A
(of length σ) is a continuous chain of modules, (Aα | α ≤ σ), consisting of pure
submodules of A such that Aσ = A and |Aα+1/Aα| ≤ κ for all α < σ.

Now, we recall without proof several easy and well–known properties of pure
embeddings:

Lemma 1.45. Let λ ≥ |R| + ℵ0.

(a) Let M be a module and X a subset of M with |X| ≤ λ. Then there is a
pure submodule N ⊆∗ M such that X ⊆ N and |N | ≤ λ.

(b) Assume C ⊆ B ⊆ A, C ⊆∗ A and B/C ⊆∗ A/C. Then B ⊆∗ A.

(c) If A ⊆∗ B and B ⊆∗ C, then A ⊆∗ C.

(d) Assume A0 ⊆ · · · ⊆ Aα ⊆ Aα+1 ⊆ . . . is a chain of pure submodules of
M . Then

⋃
α Aα is a pure submodule of M .

The next lemma shows the role of the κ–refinements:

Lemma 1.46. Let κ = |R|+ℵ0. Let C = (A,B) be a cotorsion pair cogenerated
by a class C ⊆ PI. Then the following are equivalent.

(a) A ∈ A.

(b) There is a cardinal λ such that A has a κ–refinement (Aα | α ≤ λ) with
Aα+1/Aα ∈ A for all α < λ.

Proof. (a) implies (b): if |A| ≤ κ, we let λ = 1, A0 = 0 and A1 = A. So we
can assume that |A| > κ. Let λ = |A|. Then A ∼= F/K, where F = R(λ) is a free
module. We enumerate the elements of F in a λ–sequence: F = {xα | α < λ}.
By induction on α, we will define a sequence (Aα | α ≤ λ) so that for all α ≤ λ,
Aα is pure in A and belongs to ⊥C. Since each C ∈ C is pure–injective, it will
follow from the long exact sequence induced by

0 → Aα → Aα+1 → Aα+1/Aα → 0

that Aα+1/Aα ∈ A for all α < λ.
Aα will be constructed so that it equals (R(Iα) + K)/K for some Iα ⊆ λ

such that R(Iα) ∩K is pure in K. Let A0 = 0. Assume Aβ has been defined for
all β < σ. Suppose first that σ = α + 1. By induction on n < ω we will define
an increasing chain F0 ⊆ F1 ⊆ . . . and then put Aα+1 =

⋃
n<ω(Fn + K)/K.

We require that |Fn+1/Fn| ≤ κ for all n < ω, and furthermore: for n odd, that
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(Fn +K)/K is pure in F/K; for n even, that Fn = R(Jn) for some Jn ⊇ Jn−2 ⊇
· · · ⊇ J0 and Fn ⊇ K ′

n ⊇ K ′
n−2 ⊇ · · · ⊇ K ′

0 where Fn−1 ∩ K ⊆ K ′
n ⊆∗ K.

(Roughly speaking, the condition for n odd will take care of the purity of Aα+1

in A, while the condition for n even of Aα+1 ∈ ⊥C.)
First put F−1 = F0 = R(Iα) and let J0 = Iα and K ′

0 = R(Iα) ∩ K. Assume
Fn−1 has been constructed and n is odd. By Lemma 1.45 (a), there is a pure
submodule (Fn+K)/(Fn−2+K) ⊆∗ F/(Fn−2+K) of cardinality ≤ κ containing
(xαR+Fn−1+K)/(Fn−2+K). Moreover, we can choose Fn so that |Fn/Fn−1| ≤
κ. By Lemma 1.45 (b), (Fn + K)/K is pure in F/K.

Assume n > 0 is even. We first define K ′
n: by Lemma 1.45 (a), we find a

pure submodule K ′
n/K ′

n−2 ⊆∗ K/K ′
n−2 of cardinality ≤ κ containing (Fn−1 ∩

K)/K ′
n−2. This is possible, since K ′

n−2 ⊇ Fn−3∩K and (Fn−1∩K)/(Fn−3∩K)
embeds in Fn−1/Fn−3, so it has cardinality ≤ κ. By Lemma 1.45 (b), we have
K ′

n ⊆∗ K.
We can choose Jn ⊆ λ such that |Jn − Jn−2| ≤ κ and Fn−1 + K ′

n ⊆ R(Jn) =
Fn. This is possible, since |(Fn−1 + K ′

n)/Fn−2| ≤ κ; indeed, we have the exact
sequence

0 → Fn−1/Fn−2 → (Fn−1 + K ′
n)/Fn−2 → (Fn−1 + K ′

n)/Fn−1 → 0,

and (Fn−1 + K ′
n)/Fn−1

∼= K ′
n/(Fn−1 ∩ K) has cardinality ≤ κ, because it is a

homomorphic image of K ′
n/K ′

n−2.
Now define Aα+1 =

⋃
n<ω(Fn + K)/K and Iα+1 =

⋃
n<ω J2n. By Lemma

1.45 (d), Aα+1 ⊆∗ A. Clearly |Aα+1/Aα| ≤ κ.
We have Aα+1

∼= F ′/K ′, where F ′ =
⋃

n<ω F2n and K ′ = F ′ ∩ K. Also,

F ′ = R(Iα+1) is free, and K ′ =
⋃

n<ω K ′
2n(=

⋃
n<ω F2n ∩ K) is pure in K by

construction and Lemma 1.45 (d).
Let C ∈ C. In order to prove that Ext(Aα+1, C) = 0, we have to extend

any f ∈ Hom(K ′, C) to an element of Hom(F ′, C). First f extends to K, since
K ′ ⊆∗ K and C is pure–injective. By the assumption (a), we can extend further
to F , and then restrict to F ′.

Finally, if σ ≤ λ is a limit ordinal, let Aσ =
⋃

β<σ Aβ . Then Aσ has the
desired properties by Lemma 1.30 and Lemma 1.45 (d).

(b) implies (a): by Lemma 1.30.

Lemma 1.47. Let R be a ring, κ be a cardinal and (A,B) a cotorsion pair.
Assume that each A ∈ A is a union of a continuous chain, (Aα | α < σ) of
submodules of A such that Aα+1/Aα ∈ A and |Aα+1/Aα| ≤ κ, for all α+1 < σ.
Let S be a representative set of those elements of A which have cardinality ≤ κ.
Then B = S⊥.

Proof. Clearly B ⊆ S⊥. Conversely, take N ∈ S⊥. Let A ∈ A. By
assumption, and by the choice of S, Ext1R(Aα+1/Aα, N) = 0 for all α < σ. By
Lemma 1.30, Ext(A,N) = 0, so N ∈ B, and B = S⊥.

Theorem 1.48. Let (A,B) be the cotorsion pair cogenerated by a class C ⊆ PI.
Then CC is complete, closed, and hence perfect.

Proof. Let κ = |R| + ℵ0. Denote by S the direct sum of a representative
set of the class {A ∈ Mod–R | |A| ≤ κ and Ext(A, C) = 0}.
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By Lemma 1.46, each A ∈ A has a κ–refinement (Aα | α ≤ λ). By Lemma
1.47, CC is generated by a set, so CC is a complete cotorsion pair by Theorem
1.40 (b).

Let C be a pure–injective module. By Lemma 1.35, ⊥C is closed under direct
limits. It follows that the cotorsion pair CC is closed. Finally, CC is perfect by
Corollary 1.28.

Theorem 1.48 can be extended to higher Ext–orthogonal classes with the
help of the following result due to Auslander:

Lemma 1.49. Let R be a ring. Then the class PI is cosyzygy closed.

Proof. Let
0 → P

µ
−→ E

π
−→ F → 0 (1.1)

be a short exact sequence, where P is pure–injective and E = E(P ) is the
injective hull of P . We prove that F is pure–injective. Then any cosyzygy
module of P is isomorphic to F ⊕ I, where I is injective, so PI is cosyzygy
closed.

Applying the functor (−)cc to (1.1), we get the following commutative dia-
gram

0 −−−−→ P
µ

−−−−→ E
π

−−−−→ F −−−−→ 0

ηP

y ηE

y ηF

y

0 −−−−→ P cc µcc

−−−−→ Ecc πcc

−−−−→ F cc −−−−→ 0,

where ηs are the evaluation monomorphisms. Since P is pure–injective, ηP

splits, so the exists ρ ∈ HomR(P cc, P ) such that ρηP = idP . Since E is injective,
there is σ ∈ HomR(Ecc, E) with µρ = σµcc. Then σηEµ = σµccηP = µρηP = µ.
Since µ is minimal, ϕ = σηE is an automorphism.

Denote by τ ∈ HomR(F cc, F ) the morphism induced by σ. Then πσ = τπcc.
We will prove that ψ = τηF is an automorphism.

Let f ∈ F . Take e ∈ E with π(e) = f . Then ψ(f) = ψπ(e) = τπccηE(e) =
πσηE(e) = πϕ(e).

Since πϕ is surjective, there is e′ ∈ E with f = πϕ(e′). Then ψ(f ′) = f ,
where f ′ = π(e). This proves that ψ is surjective.

Assume that ψ(f) = 0. Then ϕ(e) = µ(p) for some p ∈ P , and µ(p) = ϕµ(p).
Since ϕ is monic, we have e = µ(p), so f = π(e) = 0. This shows that ψ is
monic.

Finally, since ψ is an automorphism, ηF splits, and F is pure–injective.

Corollary 1.50. Let R be a ring and C be a pure–injective module. Then the
class ⊥∞C is closed under pure submodules, pure–epimorphic images and direct
limits.

Proof. Let E : 0 → X −→ Y −→ Z → 0 be a pure–exact sequence with
Y ∈ ⊥∞C. Let Ci be the i–th cosyzygy in some injective coresolution of C.
By Lemma 1.49, Ci is pure–injective for each i < ω. Since Y ∈ ⊥Ci and E is
pure–exact, we have Z ∈ ⊥Ci. So ⊥∞C is closed under pure–epimorphic images.
By Lemma 1.35, ⊥∞C is also closed under direct limits.

Finally, from the long exact sequence

. . . → 0 → Extn
R(X,C) → Extn+1

R (Z,C) → 0 → . . .
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we infer that ⊥∞C is closed under pure submodules.

Corollary 1.51. Let R be a ring, 0 < n < ω, and let C be a class of pure–
injective modules. Then the cotorsion pairs (⊥nC, (⊥nC)⊥) and (⊥∞C, (⊥∞C)⊥)
are perfect.

Proof. By Theorem 1.48 and Lemma 1.49.

There is an analogue of Lemma 1.46 for the Tor–bifunctor:

Lemma 1.52. Let C be any class of left R–modules. Let κ = |R| + ℵ0. The
following conditions are equivalent for any module A:

(a) A ∈ ⊺C.

(b) There is a cardinal λ such that A has a κ–refinement (Aα | α ≤ λ) such
that Aα+1/Aα ∈ ⊺C for all α < λ.

Proof. Put P = {Cc | C ∈ C}. Then P is a class of pure–injective modules
and ⊥P = ⊺C by Lemma 1.14. So the assertion follows from Lemma 1.46.

Corollary 1.53. Let R be a ring. Let κ = |R| + ℵ0. Then |LTor| ≤ 22κ

.

Proof. Let S be a representative set of the class of all modules of cardinality
≤ κ. Clearly |S| ≤ 2κ . Let (A,B) be a Tor–pair. By Lemmas 1.52 and 1.32,
there is a subset T ⊆ S such that T ⊺ = B. It follows that |LTor| ≤ 22κ

.

Theorem 1.54.

(a) Let C be any class of left R–modules. Then every module has a ⊺C–cover.

(b) Let D be any class consisting of character modules (of left R–modules).
Then every module has a ⊥D–cover.

Proof. (a) As above, we have A = ⊺C = ⊥P, where P is a class of pure–
injective modules. Then every module has an A–cover by Theorem 1.48.

(b) Since any character module is pure–injective, every module has a ⊥D–
cover by Theorem 1.48.

Example 1.55. Let R be an artin algebra over a commutative artinian ring
k. Let M be a class of finitely generated modules. Then every module has
a ⊥M–cover. Indeed, any finitely generated module M is isomorphic to Mdd.
Here (−)d denotes the standard duality Homk(−, I) where I =

⊕
S E(S) and

S runs over all simple k–modules. So M is pure–injective, and Theorem 1.48
applies.

In view of the importance of the basic construction in Theorem 1.40, it is
natural to ask for its dualization. Unlike the direct limit functor, the inverse
limit one is not (right) exact in general.

Despite this problem, surprisingly, many results above do have their coun-
terparts in the dual setting. However, the dual of the basic construction holds
true only in a weaker form (for more details, see [76]). A complete dualization is
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not possible in ZFC: in [36], Eklof and Shelah proved that it is consistent with
ZFC + GCH that there is no ⊥Z–precover of the group Q.

A complete dualization is however possible in particular cases. Here, we
present a dual of the Bongartz construction (see Lemma 1.43) following [73]:

Proposition 1.56. Let R and S be rings. Let A ∈ S–Mod–R and B ∈ Mod–R.
Denote by λ the number of generators of the left S–module Ext1R(B,A).
Assume that Ext1R(Aλ, A) = 0. Then there is a module C ∈ Mod–R such that

(a) Ext1R(C,A) = 0 and

(b) there is an exact sequence 0 → Aλ −→ C
π
−→ B → 0 in Mod–R.

In particular, π is a special ⊥A–precover of B.

Proof. We choose extensions Eα = 0 → A −→ Eα
ρα
−−→ B → 0 (α < λ)

so that their equivalence classes generate Ext1R(B,A) as a left S–module. Let

0 → Aλ µ
−→ C −→ B → 0 be the extension obtained by a pullback of the

direct product extension 0 → Aλ −→
∏

α<λ Eα

∏
ρα

−−−→ Bλ → 0 and of ∆B ∈

HomR(B,Bλ) defined by ∆B(b) = (b | α < λ). For each α < λ, we have the
following commutative diagram:

0 −−−−→ Aλ −−−−→
∏

α<λ Eα

∏
ρα

−−−−→ Bλ −−−−→ 0
∥∥∥ τ

x ∆B↑σα

y

0 −−−−→ Aλ µ
−−−−→ C −−−−→ B −−−−→ 0

πα

y h

y
∥∥∥

0 −−−−→ A
f

−−−−→ Xα
g

−−−−→ B −−−−→ 0,
∥∥∥

∥∥∥

0 −−−−→ A −−−−→ Eα
ρα

−−−−→ B −−−−→ 0,

where σα is the α–th projection of Bλ to B, and the third row is obtained by
pushing out the second row along the α–th canonical projection πα of Aλ onto
A. Using the α–th projection ηα of

∏
α<λ Eα onto Eα and the pushout property,

we get ϕ ∈ HomR(Xα, Eα), making the lower left square commutative.
Since Im(f) = Ker(g), Im(h) + Ker(g) = Xα and gh = σα(

∏
ρα)τ =

ραηατ = ραϕh, we infer that also the lower right square is commutative. This
means that the third and fourth rows are equivalent as extensions of A by B.

Consider the long exact sequence

0 → HomR(B,A) → HomR(C,A) → HomR(Aλ, A)
δ
→

Ext1R(B,A) → Ext1R(C,A)
Ext1R(µ,A)

→ Ext1R(Aλ, A) = 0

induced by Exti
R(−, A). Since equivalence classes of the extensions Eα (α < λ)

generate Ext1R(B,A), the commutative diagram constructed above shows that
the connecting S–homomorphism δ is surjective. Hence the S–homomorphism
Ext1R(µ,A) is a monomorphism. This proves that Ext1R(C,A) = 0.
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2 Deconstruction of cotorsion pairs

By Theorem 1.40, in order to prove that a cotorsion pair C = (A,B) is complete,
it suffices to show that C is generated by a set S ⊆ A. By Theorem 2.20 below,
C is generated by a set, if and only if there is a cardinal κ such that each module
in A is A≤κ–filtered. The process of finding A≤κ–filtrations for all modules in
A is called the deconstruction of the cotorsion pair C.

We will start with simple cases of deconstruction that yield approximations
in various classes of modules of finite homological dimension.

Then we will proceed with one of the basic general tools of deconstruction,
the Hill Lemma. It will be used together with other set–theoretic methods to
prove that natural closure properties of the classes A and B already imply com-
pleteness of the cotorsion pair C. These results will be crucial for characterizing
tilting and cotilting cotorsion pairs in chapter 3.

We start with a proof of the Enochs conjecture saying that any module
over any ring has a flat cover. We will also generalize Enochs’ construction of
torsion–free covers of modules over commutative domains. Both of these results
are straightforward consequences of Theorem 1.48 (which in turn is based on
the deconstruction Lemma 1.46):

Theorem 2.1. Let R be a ring.

(a) The Enochs cotorsion pair (FL, EC) is perfect and hereditary. In particu-
lar, every module has a flat cover and an Enochs cotorsion envelope.

(b) The Warfield cotorsion pair (T F ,RC) is perfect. In particular, every
module has a torsion–free cover and a Warfield cotorsion envelope.

Proof. We have FL = ⊥PI, and T F = ⊥D, where

D = {N c | N = R/Rr and r ∈ R} ⊆ PI

(see Lemma 1.14). So Theorem 1.48 applies to the cotorsion pairs (FL, EC)
and (T F ,RC), respectively. The Enochs cotorsion pair is hereditary by Lemma
1.20.

Example 2.2. Let R be a domain. For any module M , Warfield constructed
the cotorsion hull of M , that is, an overmodule M̄ of M such that M̄ ∈ RC,
M̄/M ∈ T F , and M is a torsion–free essential submodule in M̄ (that is, there
is no non–zero submodule K in M̄ such that M ∩ K = 0 and M̄/(K + M)
is torsion–free, cf. [44, XIII.8]). Letting C = RC, we see that the sequence
E : 0 → M → M̄ → M̄/M → 0 is an Ext–generator in the sense of Theorem
1.23. The torsion–free essentiality implies that E has the property as in Lemma
1.25, so by Lemma 1.26, the RC–envelope of M coincides with the inclusion
M →֒ M̄ .

Since FL = F0, it is natural to consider next the classes Fn of all modules
of flat dimension ≤ n:

Theorem 2.3. Let R be a ring and n ≥ 0. Then the cotorsion pair (Fn, (Fn)⊥)
is perfect and hereditary.
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Proof. If M,N ∈ Mod–R and n ≥ 0, then we have

TorR
n+1(M,N) ∼= TorR

1 (Ωn(M), N) .

Since F0 = ⊥PI, we infer that Fn = ⊥Cn where Cn is the class of all n–th
cosyzygies of all pure–injective modules. By Lemma 1.49, Cn ⊆ PI, so Theorem
1.48 applies. Since Fn is resolving, (Fn, (Fn)⊥) is hereditary by Lemma 1.20.

Another straightforward consequence of the general theory is the existence
of special divisible and fp–injective preenvelopes of modules:

Definition 2.4. Let R be a ring and M be a module.

(i) M is fp–injective, provided that Ext1R(F,M) = 0 for each finitely presented
module F . The class of all fp–injective modules is denoted by FI. The
two extreme cases are the following: R is right noetherian, iff fp–injectivity
coincides with injectivity; and R is von Neumann regular, iff all modules
are fp–injective (cf. [2]).

M is divisible, provided that Ext1R(F,M) = 0 for each cyclically presented
module F , that is, Ext1R(R/rR,M) = 0 for each r ∈ R. The class of all
divisible modules is denoted by DI.

(ii) M is cp–filtered, (fp–filtered, provided that M is C–filtered where C is the
class of all cyclically presented (finitely presented) modules. Denote by
CF (FF) the class of all cp–filtered (fp–filtered) modules.

(iii) Further, denote by CS (FS) the class of all direct summands of cp–filtered
(fp–filtered) modules.

Sometimes fp–injective modules are called absolutely pure, because of the
following characterization:

Lemma 2.5. Let R be a ring and M be a module. Then M is fp–injective, if
and only if any embedding M ⊆ N is pure.

Proof. Assume M is fp–injective and ν : M →֒ N . Let F be any finitely
presented module. Since Ext1R(F,M) = 0, the map HomR(F, ν) is surjective.
So ν is a pure embedding.

Conversely, let F be finitely presented and consider the exact sequence 0 →
M →֒ N

π
→ F → 0. Since M is pure in N , the identity map idF factors through

π. It follows that the sequence splits, so Ext1R(F,M) = 0.

Clearly I0 ⊆ FI ⊆ DI and CS ⊆ FS for any ring R. By Lemma 1.33,
we have CS ⊆ P1, when R is a domain. Moreover, CS = P1 for any valuation
domain by a result of Fuchs (see [44, VI.6]).

Theorem 2.6. Let R be a ring.

(a) (CS,DI) is a complete cotorsion pair. In particular, every module has
a special divisible preenvelope. For any module M , there exist divisible
modules D and D′, cp–filtered modules C and C ′, and two exact sequences
0 → M −→ D −→ C → 0 and 0 → D′ −→ C ′ −→ M → 0.
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(b) (FS,FI) is a complete cotorsion pair. In particular, every module has a
special fp–injective preenvelope. For any module M , there exist fp–injective
modules I and I ′, fp–filtered modules F and F ′, and two exact sequences
0 → M −→ I −→ F → 0 and 0 → I ′ −→ F ′ −→ M → 0.

Proof. Put M =
⊕

r∈R R/rR and let N be the direct sum of a represen-
tative set of all finitely presented modules. By Theorem 1.40 and Corollary
1.41, (CS,DI) and (FS,FI) are complete cotorsion pairs generated by M and
N , respectively. The existence of the exact sequences follows from part (b) of
Corollary 1.41.

In Corollaries 4.14 and 4.15 below, we will see that the statement of Theorem
2.6 is the best possible in the sense that there exist no divisible envelopes, and
no fp–injective envelopes, in general.

We turn to approximations by classes of modules of finite injective and pro-
jective dimension:

Theorem 2.7. Let R be a ring and n < ω. Then (⊥In, In) is a complete hered-
itary cotorsion pair. In particular, every module has a special In–preenvelope.

Proof. Let M be a module. Let

I : 0 → M → I0 → I1 → . . . → In−1 → In → . . .

be an injective coresolution of M . Let Cn be the n–th cosyzygy of M in I. Then
M ∈ In, iff Cn is injective. By the Baer Criterion, the latter is equivalent to
Ext1R(R/I,Cn) = 0, and hence – by dimension shifting – to Extn

R(R/I,M) = 0,
for all right ideals I of R. Denote by SI the n–th syzygy (in a projective resolu-
tion) of the cyclic module R/I. Then Extn

R(R/I,M) = 0, iff Ext1R(SI ,M) = 0.
So In = (

⊕
I⊆R SI)

⊥, and the assertion follows by Theorem 1.40 (b).
The cotorsion pair is hereditary by Corollary 1.21 (b), since the class In is

cosyzygy closed.

The proof of Theorem 2.7 is based on the existence of a test module for
injectivity, that is, on the Baer Criterion. In the dual case, the existence of
test modules for projectivity depends on the structure of the base ring. If R is
not right perfect, then it is consistent with ZFC + GCH that there are no test
modules for projectivity (see [73, §2]). If R is right perfect, then a test module
for projectivity always exists:

Lemma 2.8. Let R be a right perfect ring and n < ω. Let Cn = {Ω−n(M) |
M ∈ simp R}. Then Pn = ⊥Cn.

Proof. Let n = 0. We have to prove that P0 = ⊥(simp R).
Assume N ∈ ⊥(simp R) \ P0. Since R is right perfect, N has a projective

cover 0 → K →֒ P → N → 0 where K is a non–zero superfluous submodule of P ,
and K has a maximal submodule L. By assumption, Ext1R(N,K/L) = 0. So the
projection π : K → K/L can be extended to σ ∈ HomR(P,K/L). Then Ker σ
is a maximal submodule of P , so K ⊆ Rad(P ) ⊆ Ker σ, and π = σ ↾ K = 0, a
contradiction.
Assume that n > 0 and consider N ∈ Mod–R. Then

N ∈ Pn ⇐⇒ Ωn(N) ∈ P0 ⇐⇒ Ext1R(Ωn(N), simp R) = 0 ⇐⇒
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Extn
R(N, simp R) = 0 ⇐⇒ Extn

R(N, Cn) = 0.

Thus the lemma follows.

Nevertheless, a result dual to Theorem 2.7 is true for any ring. The proof
makes use of a deconstruction of the cotorsion pair (Pn,P⊥

n ) resembling Lemma
1.46. The result comes from [1].

Before presenting a proof, we need a generalization of the notion of a right
noetherian ring:

Definition 2.9. Let R be a ring. Let κ be a cardinal. Then R is right κ–
noetherian, provided that each right ideal I of R is ≤ κ–generated. The least
infinite cardinal κ such that R is right κ–noetherian is the right dimension of
R, denoted by dim(R).

Lemma 2.10. Let R be a ring, and κ be a cardinal such that κ ≥ dim(R).
Then any submodule of a ≤ κ–generated module is ≤ κ–generated.

Proof. First all submodules of cyclic modules are ≤ dim(R)–generated,
since they are epimorphic images of right ideals. Further, any ≤ κ–generated
module M is a union of a continuous chain, (Mα | α ≤ κ), of submodules such
that all the factors Mα+1/Mα are cyclic. If K ⊆ M , then K ∩ Mα+1/K ∩ Mα

embeds into Mα+1/Mα for each α < κ, and the assertion follows.

Lemma 2.11. Let n < ω, R be a ring, κ = dim(R), and M ∈ Pn. Then M is
P≤κ

n –filtered.

Proof. Let λ = gen(M) + κ. By Eilenberg’s trick, M has a free resolution

R : 0 → R(An) fn
→ R(An−1) → . . . → R(A1) f1

→ R(A0) f0
→ M → 0,

such that |Ai| ≤ λ for each i ≤ n.
Let (mα | α < λ) be a set of R–generators of M . By induction on α, we will

construct a P<κ
n –filtration (Mα | α < λ) of M together with free resolutions Rα

of Mα which are restrictions of R:

Rα : 0 → Fα,n
fn↾Fα,n

→ Fα,n−1 → . . . → Fα,1
f1↾Fα,1
→ Fα0

f0↾Fα,0
→ Mα → 0,

so that mα ∈ Mα+1, Fα,i = R(Aα,i) for some Aα,i ⊆ Ai, and |Aα+1,i \ Aα,i| ≤ κ,
for all α < λ and i ≤ n.

First M0 = 0 and A0,i = ∅ for all i ≤ n. Assume Mα and Rα are defined.
If Mα 6= M , let γ < λ be the least index such that mγ /∈ Mα. Clearly there
is a subset B0 ⊆ A0 of cardinality ≤ κ (in fact, a finite one) such that mγ ⊆
f0(R

(Aα,0∪B0)).
Since

Ker(f0 ↾ R(Aα,0)) = Ker(f0 ↾ R(Aα,0∪B0)) ∩ R(Aα,0),

we have

Ker(f0 ↾ R(Aα,0∪B0))/Ker(f0 ↾ R(Aα,0)) ∼=

∼= (R(Aα,0) + Ker(f0 ↾ R(Aα,0∪B0)))/R(Aα,0).
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The latter module is a submodule in R(Aα,0∪B0)/R(Aα,0) ∼= R(B0). So the exact-
ness of Rα at Fα,0, of R at R(A0), and Lemma 2.10 yield the existence of a subset
B1 ⊆ A1 of cardinality ≤ κ such that Ker(f0 ↾ R(Aα,0∪B0)) ⊆ f1(R

(Aα,1∪B1)).
Similarly, there is a subset B2 ⊆ A2 of cardinality ≤ κ such that Ker(f1 ↾

R(Aα,1∪B1)) ⊆ f2(R
(Aα,2∪B2)), etc. Finally, there is a subset Bn ⊆ An of cardi-

nality ≤ κ such that Ker(fn−1 ↾ R(Aα,n−1∪Bn−1)) ⊆ fn(R(Aα,n∪Bn)).
Now there is a subset Bn−1 ⊆ B′

n−1 ⊆ An−1 of cardinality ≤ κ such that

fn(R(Aα,n∪Bn)) ⊆ R(Aα,n−1∪B′

n−1), etc. Finally, there is a subset B0 ⊆ B′
0 ⊆ A0

of cardinality ≤ κ such that f1(R
(Aα,1∪B′

1)) ⊆ R(Aα,0∪B′

0).
Continuing this back and forth procedure in R, we obtain, for each i ≤ n, a

countable chain Bi ⊆ B′
i ⊆ Bi

′′ ⊆ . . . consisting of subsets of Ai of cardinality
≤ κ. Let Ci = Bi ∪ B′

i ∪ Bi
′′ ∪ . . . . Then Ci has cardinality ≤ κ, the sequence

Rα+1 : 0 → Fα+1,n
fn↾Fα+1,n

→ Fα+1,n−1 → . . .

. . . → Fα+1,1
f1↾Fα+1,1

→ Fα+1,0
f0↾Fα+1,0

→ N → 0,

with Fα+1,i = R(Aα,i∪Ci) is exact, and {mγ} ∪ Mα ⊆ N . (The backward
procedure takes care of kernels being inside images, while the forward one of
the resulting sequence being a complex.)

We put Mα+1 = N . Note that Rα is an exact subcomplex of the exact
complex Rα+1, so the factor complex Rα+1/Rα is exact. This shows that
Mα+1/Mα ∈ P≤κ

n .
For a limit ordinal α < λ, we define Aα,i =

⋃
β<α Aβ,i and Mα =

⋃
β<α Mβ .

Then the corresponding restriction of R is a free resolution of Mα.

Now we easily derive

Theorem 2.12. Let R be a ring and n < ω.

(a) Then Cn = (Pn,P⊥
n ) is a complete hereditary cotorsion pair. In particular,

every module has a special Pn–precover.

(b) If R is right ℵ0–noetherian, then Cn is generated by (a representative set
of) the class P≤ω

n .

(c) If R is right perfect, then the cotorsion pair Cn is perfect.

Proof. Let κ = dim(R). By Lemmas 1.30 and 2.11, we have P⊥
n = (P≤κ

n )⊥.
Clearly P≤κ

n has a representative set of elements. By Corollary 1.41 (b) and
Lemma 1.33, we get ⊥(P⊥

n ) = Pn, so Cn is a complete cotorsion pair. Cn is
hereditary by Corollary 1.21 (a). If R is right perfect, then Pn = Fn, and
Theorem 2.3 applies.

Though (Pn,P⊥
n ) is always complete, there may be no minimal approxima-

tions available if R is not right perfect. This is well–known for n = 0 (see [17]).
For the case n = 1, see Corollary 4.15 below.

Theorem 2.13. Let R be a right noetherian ring. Then En = (⊥(I⊥
n ), I⊥

n ) is
a complete cotorsion pair. Moreover, if inj dimR ≤ n, then En = (In, I⊥

n ) is a
perfect cotorsion pair.
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Proof. Since R is right noetherian, there is a cardinal κ such that each
injective module is a direct sum of ≤ κ generated modules by the Faith–Walker
Theorem. So an analogue of Lemma 2.11 holds true for In – there is a set
S ⊂ In such that S⊥ = I⊥

n (the proof is dual to the one given in Lemma 2.11,
via a back and forth procedure in an injective coresolution of an element of In).
By Theorem 1.40 (b) and Lemma 1.30, it follows that En is complete.

By Corollary 1.36, In is closed under direct limits. Assume R ∈ In. Then
w.l.o.g. R ∈ S, so the class ⊥(I⊥

n ) consists of direct summands of S–filtered
modules by Corollary 1.42. By induction on the length of the S–filtration, we
get that ⊥(I⊥

n ) = In. Finally, En is perfect by Corollary 1.28.

Example 2.14. Let R be an Iwanaga–Gorenstein ring, that is, a left and right
noetherian ring with finite injective dimension on either side. Then the left
and the right injective dimensions of R coincide with some n < ω, and R is
called n–Iwanaga–Gorenstein. Moreover, all (left or right) R–modules of finite
injective (projective, flat) dimension have injective (projective, flat) dimension
≤ n, so in Mod–R, we have P = Pn = I = In = Fn (see e.g. [40, §9.1]). The
latter is a covering class in Mod–R by Theorem 2.3. The same is true for the
corresponding classes of left R–modules: we will denote by L the class of all left
R–modules of finite projective dimension.

A module M is Gorenstein projective (Gorenstein injective, Gorenstein flat),
if M ∈ ⊥P (M ∈ P⊥ and M ∈ ⊺L). Denote by GP (GI, GF) the classes of
all Gorenstein projective (injective, flat) modules. By Theorem 2.7, (GP,P)
is a complete hereditary cotorsion pair, while (P,GI) is a perfect hereditary
cotorsion pair by Theorem 2.13, and (GF ,L) is a Tor–pair. In particular, every
module has a Gorenstein injective envelope, and a Gorenstein flat cover. (In
Section 5 we will prove that (P,GI) is actually a tilting cotorsion pair. This
will yield the validity of the first finitistic dimension conjecture for R.)

Similarly, one defines modules of Gorenstein projective (injective, flat) di-
mension ≤ m, and proves the existence of the corresponding cotorsion pairs,
envelopes and covers. For more details, we refer to [40, Chapters 9-11].

Assume C = (A,B) is a perfect cotorsion pair. Then often the modules in
the kernel K of C can be classified up to isomorphism by cardinal invariants (see
e.g. Theorem 2.47 below). There are two ways of extending this classification:

(i) Any module A ∈ A determines — by an iteration of B–envelopes (of A, of
the cokernel of the B–envelope of A, etc.) — a long exact sequence all of whose
members (except for A) belong to K. This sequence is called the minimal B–
coresolution of A. The sequence of the cardinal invariants of the modules from
K occurring in the coresolution is an invariant of A. In this way the structure
theory of the modules in K is extended to a structure theory for A.

(ii) Dually, any module B ∈ B determines — by an iteration of A–covers
— a long exact sequence all of whose members (except for B) belong to K, the
minimal A–resolution of B. This yields a sequence of cardinal invariants for
any module B ∈ B.

For more specific examples of (i) and (ii), we consider the case when R is a
commutative noetherian ring:

If C = (Mod–R, I0), then K = I0, and by the classical theory of Matlis, each
M ∈ K is determined up to isomorphism by the multiplicities of indecomposable
injectives E(R/p) (p a prime ideal of R) occurring in an indecomposable decom-

32



position of M . The cardinal invariants of arbitrary modules (in A = Mod–R)
constructed in (i) are called the Bass invariants.

A formula for their computation goes back to Bass: the multiplicity of
E(R/p) in the m–th term of the minimal injective coresolution of a module
N is

µm(p,N) = dimk(p) Extm
R(p)

(k(p), N(p)),

where k(p) = R(p)/Rad(R(p)) is the residue field, and R(p) and N(p) are the
localizations of R and N at p, respectively, for all p ∈ spec R and m ≥ 0 (see
[40, §9.2]).

If C = (F0, EC), then K consists of the flat pure–injective modules M . These
are described by the ranks of the free modules Fp over the localizations R(p)

whose p–completions occur in the decomposition of M for 0 6= p ∈ specR, and
by the rank of the free module F0 over R(0) that occurs in the decomposition
of M in case 0 ∈ spec R, see [40, §5.3].

The construction (ii) then yields a sequence of invariants for any Enochs
cotorsion module N . These invariants are called the dual Bass invariants. A
formula for their computation is due to Xu [79, §5.2]: the rank of Fp in the
m–th term of the minimal flat resolution of N is

πm(p,N) = dimk(p) Tor
R(p)
m (k(p),HomR(R(p), N)),

where p ∈ spec R and m ≥ 0.

Now, we present Hill’s construction of large families of submodules starting
from a single continuous chain. Our presentation is based on [72], [68], and [42].

We start with fixing our notation:

Definition 2.15. Let R be a ring and M be a continuous chain of modules,
(Mα | α ≤ σ). Consider a family of modules (Aα | α < σ) such that Mα+1 =
Mα + Aα for each α < σ.
A subset S of σ is closed, if every β ∈ S satisfies

Mβ ∩ Aβ ⊆
∑

α∈S,α<β

Aα.

The height, hgt(x), of an element x ∈ Mσ is defined as the least ordinal α < σ
such that x ∈ Mα+1. For any subset S of σ, we define M(S) =

∑
α∈S Aα.

For each ordinal α ≤ σ, we have Mα =
∑

β<α Aβ , so α (= {β < σ | β < α})
is a closed subset of σ.

Lemma 2.16. Let S be a closed subset of σ, and x ∈ M(S). Let S′ = {α ∈ S |
α ≤ hgt(x)}. Then x ∈ M(S′).

Proof. Let x ∈ M(S). Then x = x1 + · · · + xk where xi ∈ Aαi
for some

αi ∈ S, 1 ≤ i ≤ k. W.l.o.g., α1 < · · · < αk, and αk is minimal.
If αk > hgt(x), then xk = x−x1−· · ·−xk−1 ∈ Mαk

∩Aαk
⊆

∑
α∈S,α<αk

Aα,
since S is closed, in contradiction with the minimality of αk.

As an immediate corollary, we have

Corollary 2.17. Let S be a closed subset of σ, and x ∈ M(S). Then hgt(x) ∈ S.
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Lemma 2.18. Let (Si | i ∈ I), be a family of closed subsets of σ. Then

M(
⋂

i∈I

Si) =
⋂

i∈I

M(Si).

Proof. Let T =
⋂

i∈I Si. Clearly M(T ) ⊆
⋂

i∈I M(Si). Suppose there is an
x ∈

⋂
i∈I M(Si) such that x 6∈ M(T ), and choose such an x of minimal height.

Then x = y + z for some y ∈ Ahgt(x) and z ∈ Mhgt(x). By Corollary 2.17,

hgt(x) ∈ Si for all i ∈ I, so hgt(x) ∈ T , and y ∈ M(T ). Then z ∈
⋂

i∈I M(Si),
z 6∈ M(T ) and hgt(z) < hgt(x), in contradiction to minimality.

Next we prove that intersections and unions of closed subsets are again
closed:

Proposition 2.19. Let (Si | i ∈ I) be a family of closed subsets of σ. Then
both the union and the intersection of this family are again closed in σ. That
is, closed subsets of σ form a complete sublattice of 2σ.

Proof. As for the union, if β ∈ S =
⋃

i∈I Si, then β ∈ Si for some i ∈ I,
and Mβ ∩ Aβ ⊆

∑
α∈Si,α<β Aα ⊆

∑
α∈S,α<β Aα.

For the intersection, let β ∈ T =
⋂

i∈I Si. Then Mβ∩Aβ ⊆ M(Si∩β) for each
i ∈ I. Therefore Lemma 2.18 implies that Mβ∩Aβ ⊆

⋂
i∈I M(Si∩β) = M(T∩β)

which exactly says that T is closed.

The general version of the Hill Lemma can now be stated as follows:

Theorem 2.20. Let R be a ring, κ an infinite regular cardinal and C a set of
< κ–presented modules. Let M be a module with a C–filtration M = (Mα | α ≤
σ). Then there is a family F consisting of submodules of M such that:

(H1) M ⊆ F .

(H2) F is closed under arbitrary sums and intersections.

(H3) Let N,P ∈ F be such that N ⊆ P . Then there exists a C–filtration
(P̄γ | γ ≤ τ) of the module P̄ = P/N such that τ ≤ σ, and for each γ < τ
there is a β < σ with P̄γ+1/P̄γ isomorphic to Mβ+1/Mβ.

(H4) Let N ∈ F and X be a subset of M of cardinality < κ. Then there is a
P ∈ F such that N ∪ X ⊆ P and P/N is < κ–presented.

Proof. Consider a family of < κ–generated modules (Aα | α < σ) such that
for each α < σ:

Mα+1 = Mα + Aα,

as in Definition 2.15. We claim that

F = {M(S) | S a closed subset of σ}

has properties (H1)–(H4).
Property (H1) is clear, since each ordinal α ≤ σ is a closed subset of σ.

Property (H2) follows by Proposition 2.19 and Lemma 2.18.
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Property (H3) is proved as follows: we have N = M(S) and P = M(T ) for
some closed subsets S, T . Since S ∪ T is closed, we can w.l.o.g. assume that
S ⊆ T . For each β ≤ σ, put

Fβ = N +
∑

α∈T\S,α<β

Aα = M(S ∪ (T ∩ β)) and F̄β = Fβ/N.

Clearly (F̄β | β ≤ σ) is a filtration of P̄ = P/N such that F̄β+1 = F̄β + (Aβ +
N)/N for β ∈ T \ S and F̄β+1 = F̄β otherwise. Let β ∈ T \ S. Then

F̄β+1/F̄β
∼= Fβ+1/Fβ

∼= Aβ/(Fβ ∩ Aβ),

and
Fβ ∩ Aβ ⊇ (

∑

α∈T,α<β

Aα) ∩ Aβ = Mβ ∩ Aβ .

However, if x ∈ Fβ ∩Aβ , then hgt(x) ≤ β, so x ∈ M(T ′) by Lemma 2.16, where
T ′ = {α ∈ S ∪ (T ∩ β) | α ≤ β}. By Proposition 2.19, we get x ∈ Mβ because
β 6∈ S. Hence Fβ ∩Aβ = Mβ ∩Aβ and F̄β+1/F̄β

∼= Aβ/(Mβ ∩ Aβ) ∼= Mβ+1/Mβ .
The C–filtration (P̄γ | γ ≤ τ) is obtained from (F̄β | β ≤ σ) by removing possible
repetitions, and (H3) follows. Denote by τ ′ the ordinal type of the well–ordered
set (T \ S,<). Notice that the length τ of the filtration can be taken as 1 + τ ′

(the ordinal sum, hence τ = τ ′ for τ ′ infinite).
For property (H4), we first prove that every subset of σ of cardinality < κ is

contained in a closed subset of cardinality < κ. Because κ is an infinite regular
cardinal, by Proposition 2.19, it is enough to prove this only for one–element
subsets of σ. So we prove that every β < σ is contained in a closed subset
of cardinality < κ, by induction on β. For β < κ, we just take S = β + 1.
Otherwise, the short exact sequence

0 → Mβ ∩ Aβ → Aβ → Mβ+1/Mβ → 0

shows that Mβ ∩Aβ is < κ–generated. Thus Mβ ∩Aβ ⊆
∑

α∈S0
Aα for a subset

S0 ⊆ β of cardinality < κ. Moreover, we can assume that S0 is closed in σ by
inductive premise, and put S = S0 ∪ {β}. To show that S is closed, it suffices
to check the definition only for β. But Mβ ∩ Aβ ⊆ M(S0) =

∑
α∈S,α<β Aα.

Finally, let N = M(S) where S is closed in σ, and let X be a subset of
M of cardinality < κ. Then X ⊆

∑
α∈T Aα for a subset T of σ of cardinality

< κ. By the preceding paragraph, we can assume that T is closed in σ. Let
P = M(S∪T ). Then P/N is C–filtered by property (H3), and the filtration can
be chosen indexed by 1+ the ordinal type of T \ S, which is certainly less than
κ. In particular, P/N is < κ–presented.

There is also a rank version of the Hill Lemma for torsion–free modules over
domains. Given a domain R and a torsion–free module M , we define the rank,
rkX, of a subset X ⊆ M as the torsion–free rank of the submodule 〈X〉 of M
generated by X. Note that rkX ≤ |X|.

Theorem 2.21. Let R be a domain, κ an infinite regular cardinal and C a set
of torsion–free R–modules. Let M be a module with a C–filtration M = (Mα |
α ≤ σ). Assume moreover that for each α < σ there is a submodule Aα of M
of rank < κ such that Mα+1 = Mα + Aα.
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Then there is a family F of submodules of M such that the properties (H1),
(H2) and (H3) from Theorem 2.20 hold true. Moreover, the following rank
version of property (H4) holds:

(H4∗) Let N ∈ F and X be a subset of M with rkX < κ. Then there are P ∈ F
and a submodule A ⊆ M of rank < κ such that N∪X ⊆ P and P = N+A.

For a proof of Theorem 2.21 we refer to [72].

By Corollary 1.42, if C = (A,B) is a cotorsion pair generated by a set C
containing R, then A coincides with the class of all direct summands of C–
filtered modules. Our next goal is to remove the term “direct summands” in
this characterization of A on account of replacing the set C by a suitable small
subset of A, with the help of Theorem 2.20:

Lemma 2.22. Let κ be an uncountable regular cardinal and C a set of < κ–
presented modules. Denote by A the class of all direct summands of C–filtered
modules. Then every module in A is A<κ–filtered.

Proof. Let K ∈ A, so there is a C–filtered module M such that M = K⊕L
for some L ⊆ M . Denote by πK : M → K and πL : M → L the corresponding
projections. Let F be the family of submodules of M as in Theorem 2.20. We
proceed in two steps:

Step I: By induction, we construct a continuous chain, (Nα | α ≤ τ), of
submodules of M such that Nτ = M and

(a) Nα ∈ F ,

(b) Nα = πK(Nα) + πL(Nα), and

(c) Nα+1/Nα is < κ–presented

for each α < τ .
First N0 = 0 and Nβ =

⋃
α<β Nα for all limit ordinals β ≤ τ . Suppose we

have Nα $ M and we wish to construct Nα+1. Take x ∈ M \ Nα; by property
(H4), there is Q0 ∈ F such that Nα ∪ {x} ⊆ Q0 and Q0/Nα is < κ–presented.
Let X0 be a subset of Q0 of cardinality < κ such that the set {x+Nα | x ∈ X0}
generates Q0/Nα. Put Z0 = πK(Q0)⊕πL(Q0). Clearly Q0/Nα ⊆ Z0/Nα. Since
πK(Nα), πL(Nα) ⊆ Nα, the module Z0/Nα is generated by the set

{x + Nα | x ∈ πK(X0) ∪ πL(X0)}.

Thus we can find Q1 ∈ F such that Z0 ⊆ Q1 and Q1/Nα is < κ–presented.
Similarly, we infer that Z1/Nα is < κ–generated for Z1 = πK(Q1) ⊕ πL(Q1),
and find Q2 ∈ F with Z1 ⊆ Q2 and Q2/Nα a < κ–presented module. In this
way we obtain a chain Q0 ⊆ Q1 ⊆ . . . such that for all i < ω: Qi ∈ F ,
Qi/Nα is < κ–presented, and πK(Qi) + πL(Qi) ⊆ Qi+1. It is easy to see that
Nα+1 =

⋃
i<ω Qi satisfies the properties (a)–(c).

Step II: By condition (b), we have

πK(Nα+1) + Nα = πK(Nα+1) ⊕ πL(Nα)
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and similarly for L. Hence

(πK(Nα+1) + Nα) ∩ (πL(Nα+1) + Nα)

= (πK(Nα+1) ⊕ πL(Nα)) ∩ (πL(Nα+1) ⊕ πK(Nα))

=
(
πK(Nα+1) ∩ (πL(Nα+1) ⊕ πK(Nα))

)
⊕ πL(Nα)

= πK(Nα) ⊕ πL(Nα) = Nα

and
Nα+1/Nα = (πK(Nα+1) + Nα)/Nα ⊕ (πL(Nα+1) + Nα)/Nα.

By condition (a), Nα+1/Nα is C–filtered. Since

(πK(Nα+1) + Nα)/Nα
∼= πK(Nα+1)/πK(Nα),

πK(Nα+1)/πK(Nα) is isomorphic to a direct summand of a C–filtered module,
we infer that πK(Nα+1)/πK(Nα) ∈ A. By condition (c), πK(Nα+1)/πK(Nα)
is < κ–presented. So (πK(Nα+1) | α ≤ τ) is the desired A<κ–filtration of
K = πK(Nτ ).

Now we arrive at the “Kaplansky Theorem for cotorsion pairs”:

Theorem 2.23. Let R be a ring, κ an uncountable regular cardinal, and C =
(A,B) a cotorsion pair of R–modules. Then the following conditions are equiv-
alent:

(a) C is generated by a class of < κ–presented modules;

(b) Every module in A is A<κ–filtered.

Proof. (a) =⇒ (b). Let C be a class of < κ–presented modules generating
C. W.l.o.g., C is a set, and R ∈ C. By Corollary 1.42, A consists of all direct
summands of C–filtered modules. So statement (b) follows by Lemma 2.22.

(b) =⇒ (a). By the Eklof Lemma 1.30, every A–filtered module is again
in A. Thus (b) implies that C is generated by the class A<κ.

The name of Theorem 2.23 above comes from the fact that its application to
the cotorsion pair (P0,Mod–R) generated by R yields (for κ = ℵ1) the following
classical theorem on the structure of projective modules due to Kaplansky:

Corollary 2.24. Every projective module over an arbitrary ring is a direct sum
of countably generated projective modules.

The latter application also shows that in general it is not possible to extend
Theorem 2.23 to the case of κ = ℵ0. Namely, there exist rings R which admit
countably generated projective modules that are not direct sums of finitely
generated projective ones.

Next, we present sufficient conditions for the completeness of a cotorsion pair
C = (A,B) expressed in terms of closure properties of the classes A and B. These
conditions will be crucial for the classification of tilting and cotilting modules
and classes in chapter 3. The proofs will again proceed via deconstruction of C,
but in a more sophisticated way.
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We will first consider an important case when each module in A is A≤κ–
filtered where κ = dim(R). This result comes from [71]. In order to produce
filtrations with “small” consecutive factors, one has to treat filtrations of regular
and singular length separately, since each of these cases requires different set–
theoretic techniques. We start with the regular case.

Definition 2.25. Let κ be an infinite cardinal.

(i) For a module M , a continuous chain, M = (Mα | α ≤ κ) of submodules of
M is called a κ–filtration of M provided that gen(Mα) < κ for all α < κ,
and M = Mκ.

(ii) A strictly ascending function f : κ → κ is called continuous, provided that
f(0) = 0, and f(α) = supβ<αf(β) for all limit ordinals α < κ.

(iii) If M = (Mα | α ≤ κ) is a κ–filtration of a module M , and f : κ → κ is a
continuous function, then M′ = (Mf(α) | α ≤ κ) (where we put f(κ) = κ)
is again a κ–filtration of M , called the subfiltration of M induced by f .

It is easy to see that, if κ is a regular uncountable cardinal, then any two
κ–filtrations of M coincide on a closed and unbounded subset of κ, hence they
possess a common subfiltration.

The following result says that, if a class of modules B is closed under direct
sums and M ∈ ⊥B is equipped with a κ–filtration M consisting of modules from
⊥B, then M is ⊥B–filtered by a subfiltration of M.

Theorem 2.26. Let R be a ring, κ a regular uncountable cardinal, and B a
class of modules closed under direct sums. Let M ∈ ⊥B be a module possessing
a κ–filtration (Mα | α ≤ κ) such that Mα ∈ ⊥B for all α < κ. Then there is a
strictly increasing continuous function f : κ → κ such that Mf(β)/Mf(α) ∈

⊥B
for all α < β < κ.

Proof. Assume the claim is false. Then the set

E = {α < κ | ∃β : α < β < κ& Mβ/Mα 6∈ ⊥B}

has a non–empty intersection with each closed and unbounded subset of κ. Pass-
ing to a subfiltration, we can assume that E = {α < κ | Ext1R(Mα+1/Mα,B) 6=
0}. Then for each α ∈ E there are a Bα ∈ B and a homomorphism δα :
Mα+1/Mα → E(Bα)/Bα that cannot be factorized through the projection
τα : E(Bα) → E(Bα)/Bα. For α < κ, α /∈ E, we put Bα = 0 and δα = 0.

Let I =
∏

α<κ E(Bα), D =
⊕

α<κ Bα (⊆ I), and F = I/D. For each subset
A ⊆ κ, define IA = {x ∈ I | xβ = 0 for all β < κ, β /∈ A}. In particular, Iκ = I,
and Iα

∼=
∏

β<α E(Bβ) is injective for each α ≤ κ.
For each α < κ, we let Fα = (Iα + D)/D (⊆ F ) and πα be the epimorphism

Iα → Fα defined by πα(x) = x + D. Then Ker(πα) ∼=
⊕

β<α Bβ (∈ B).
Let U =

⋃
α<κ Iα. Then D ⊆ U ⊆ I, and we let G = U/D (⊆ F ) and

π : U → G be the projection.
For each α < κ, define Eα = (I{α} + D)/D. Then there is an isomorphism

ια : E(Bα)/Bα
∼= Eα, and Fα+1 = Eα ⊕ Fα (⊆ G). Moreover, taking Cα =

(I(α,κ) + D)/D, we have F = Fα+1 ⊕ Cα, so G = Eα ⊕ Fα ⊕ (Cα ∩ G). Denote
by ξα the projection onto the first component Eα in the latter decomposition
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of G. Then ξα maps x + D ∈ G to y + D ∈ Eα, where yα = xα and yβ = 0 for
all α 6= β < κ.

In order to prove that Ext1R(M,B) 6= 0, it suffices to construct a homomor-
phism ϕ : M → G that cannot be factorized through π – then Ext1R(M,D) 6= 0.

ϕ will be constructed by induction on α < κ as a union of a continuous chain
of homomorphisms, (ϕα | α < κ), where ϕα : Mα → Fα for all α < κ.

For α < κ, we use the assumption of Ext1R(Mα,
⊕

β<α Bβ) = 0 to find a
homomorphism ηα : Mα → Iα such that ϕα = παηα. The injectivity of the
module Iα yields a homomorphism ψα : Mα+1 → Iα such that ψα ↾ Mα = ηα.

Denote by ρα the projection Mα+1 → Mα+1/Mα. Define ϕα+1 = ιαδαρα +
παψα. Then ϕα+1 ↾ Mα = παψα ↾ Mα = παηα = ϕα.

Finally, assume there is φ : M → U such that ϕ = πφ. Since U =
⋃

α<κ Iα,
the set C = {α < κ | φ(Mα) ⊆ Iα} is closed and unbounded in κ. So there
exists α ∈ C ∩ E. Denote by σ the projection I → E(Bα). Then φ induces a
homomorphism φ̄ : Mα+1/Mα → E(Bα) defined by φ̄ρα(m) = σ(φ(m)) for all
m ∈ Mα+1.

By the definition of ξα, we have ιατασ(x) = ξαπ(x) for each x ∈ U , ξα ↾

Fα = 0, and ξα ↾ Eα = id. So for each m ∈ Mα+1, we get

ταφ̄ρα(m) = ι−1
α ξαπφ(m) = ι−1

α ξαϕα+1(m) = ι−1
α ξαιαδαρα(m) = δαρα(m).

Since ρα is surjective, this proves that ταφ̄ = δα, in contradiction with the
definition of δα.

The singular cardinal case will make use of a version of Shelah’s Singular
Compactness Theorem. For this purpose, we will need to produce a rich supply
of “small” Q–filtered submodules of M . However, Theorem 2.26 at best yields
only a single chain of such submodules. The rich supply is then provided by
Lemma 2.20. But first we have to define the appropriate notion of “freeness”:

Definition 2.27. Let M be a module, Q a set of modules, and κ a regular
infinite cardinal. Then M is κ–Q–free, provided there is a set Sκ consisting of
< κ–generated Q–filtered submodules of M such that:

(i) 0 ∈ Sκ,

(ii) Sκ is closed under well–ordered chains of length < κ, and

(iii) each subset of M of cardinality < κ is contained in an element of Sκ.

The set Sκ is said to witness the κ–Q–freeness of M . If Sκ also satisfies

(iv) M/N is Q–filtered for each N ∈ Sκ,

then M is called κ–Q–separable, and Sκ is said to witness the κ–Q–separability
of M .

Clearly every κ–Q–separable module is Q–filtered. The following lemma
says that the converse is also true under rather weak assumptions.

Lemma 2.28. Let R be a ring, µ be an infinite cardinal and Q a set of ≤ µ–
presented modules. Then M is κ–Q–separable, whenever M is Q–filtered and κ
is a regular cardinal > µ. Moreover, it is possible to choose the witnessing sets
so that Sκ ⊆ Sκ′ for all regular cardinals such that µ < κ < κ′.
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Proof. By assumption, there is a Q–filtration, M = (Mα | α ≤ σ), of the
module M . Using the Hill Lemma 2.20, for each κ regular cardinal > µ, we
define Sκ as the subset of F consisting of all modules of the form M(S) where
S is a closed subset of σ of cardinality < κ. Then the inclusions Sκ ⊆ Sκ′ are
clear, and the properties (H1), (H2), (H4), and (H3) from Theorem 2.20 imply
conditions (i), (ii), (iii), and (iv) above, respectively.

If Q consists of elements of (Mod–R)<κ for an infinite cardinal κ, then all
< κ–generated Q–filtered modules belong to (Mod–R)<κ (in particular, this
is then true for all elements of Sκ defined above). This is a corollary of the
following more general result on lifting filtrations of modules to filtrations of
exact sequences:

Lemma 2.29. Let R be a ring, and M be a module. Let κ be an infinite cardinal
and (Mα | α ≤ κ) be a continuous chain of submodules of M such that M = Mκ.
For each α < κ, let

Ēα : 0 → Ker(π̄α)
⊆
−→ P̄α

π̄α−−→ Mα+1/Mα → 0

be a short exact sequence such that P̄α is a projective module. Then there exists
a short exact sequence

E : 0 → Ker(π)
⊆
−→ P

π
−→ M → 0

with P projective, and a continuous direct system of short exact sequences (Eα |
α ≤ κ) such that E = Eκ, and for each α ≤ κ, Pα is projective, Pα+1 = Pα⊕ P̄α,
and the diagram

0 0 0
y

y
y

Eα : 0 −−−−→ Ker(πα)
⊆

−−−−→ Pα
πα−−−−→ Mα −−−−→ 0

y⊆

yµα

y⊆

Eα+1 : 0 −−−−→ Ker(πα+1)
⊆

−−−−→ Pα+1
πα+1

−−−−→ Mα+1 −−−−→ 0
yσα

yρα

yρ̄α

Ēα : 0 −−−−→ Ker(π̄α)
⊆

−−−−→ P̄α
π̄α−−−−→ Mα+1/Mα −−−−→ 0

y
y

y

0 0 0

is commutative where µα : Pα → Pα+1 is the split inclusion of the first compo-
nent, ρα : Pα+1 → P̄α the split projection on the second, σα = ρα ↾ Ker(πα+1),
and ρ̄α : Mα+1 → Mα+1/Mα is the canonical projection.

Proof. The direct system (Eα | α ≤ κ) is constructed by induction on α.
First E0 = 0 → 0 −→ 0 −→ 0 → 0.

The non–limit step is essentially the Horseshoe Lemma from homological
algebra (see e.g. [40, §8.2]): assume that the construction is completed up to
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some α < κ. Let Pα+1 = Pα ⊕ P̄α, and µα : Pα →֒ Pα+1 (ρα : Pα+1 → P̄α) be
the canonical inclusion (projection).

Define πα+1 : Pα+1 → Mα+1 so that πα+1 ↾ Pα = πα and π̄α = ρ̄απα+1 ↾ P̄α

(this is possible, since P̄α is projective and ρ̄α is surjective). Then πα+1 is
surjective. Since Ker(πα+1) ∩ Pα = Ker(πα), we get commutativity of all the
squares of the diagram above except the lower left one.

It is easy to check that ρα maps Ker(πα+1) onto Ker(π̄α), so the lower left
square is also commutative, and all rows and columns of the diagram are exact
sequences.

If α ≤ κ is a limit ordinal, we let Eα = lim
−→β<α

Eβ . Then, by construction,

Pα =
⋃

β<α Pβ =
⊕

β<α P̄β is projective.

Of course, if Ēα is a projective resolution of Mα+1/Mα ∈ P<κ
1 for each

α < κ, then E is a projective resolution of M (∈ P1). If 1 ≤ n < ω and
Mα+1/Mα ∈ P<κ

n for each α < κ, we can use the canonical decomposition of
a projective resolution into a series of short exact sequences and iterate the
construction of Lemma 2.29 in order to obtain the following corollary:

Corollary 2.30. Let R be a ring, n ≥ 1, and M be a module. Let κ be an
infinite cardinal and (Mα | α ≤ κ) a κ–filtration of M . Assume that for each
α < κ, Mα+1/Mα ∈ P<κ

n , so there is a projective resolution R̄α of length n of
Mα+1/Mα consisting of < κ–generated modules.

0 0 0
y

y
y

Eα,i : 0 −−−−→ Sα,i+1
⊆

−−−−→ Pα,i −−−−→ Sα,i −−−−→ 0
y⊆

y⊆

y⊆

Eα+1,i : 0 −−−−→ Sα+1,i+1
⊆

−−−−→ Pα+1,i −−−−→ Sα+1,i −−−−→ 0
y

y
y

Ēα,i : 0 −−−−→ S̄α,i+1
⊆

−−−−→ P̄α,i −−−−→ S̄α,i −−−−→ 0
y

y
y

0 0 0

Then there exists a projective resolution R of length n of the module M ,
and for each α < κ, a projective resolution Pα of length n of the module Mα

consisting of < κ–generated modules such that, for all i < n and α < κ, the
diagram above is commutative and has exact rows and columns.

Moreover, Ei = lim
−→α<κ

Eα,i, where Ei, Eα,i and Ēα,i is the i–th short exact

sequence in the canonical decomposition into short exact sequences of the long
exact sequence R, Rα and R̄α, respectively.

The version of the Singular Compactness Theorem needed here is as follows
(for its proof, we refer to [35, XII.1.14 and IV.3.7]):
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Lemma 2.31. Let R be a ring, λ a singular cardinal, and ℵ0 ≤ µ < λ. Let Q be
a set of ≤ µ–presented modules, and M be a module with gen(M) = λ. Assume
M is κ–Q–free for each regular cardinal µ < κ < λ. Then M is Q–filtered.

For a class of modules C, and an infinite cardinal µ, denote by Fµ(C) the
assertion: “All modules in C are C≤µ–filtered”.

Lemma 2.32. Let R be a ring and B a class of modules closed under direct
sums. Let µ = dim(R). Then Fµ(⊥∞B ∩ Pn) implies Fµ(⊥∞B ∩ Pn+1) for each
n < ω.

Proof. Assume Fµ(⊥∞B ∩ Pn) holds. Let κ > µ be a regular uncountable
cardinal. Let M ∈ ⊥∞B ∩ Pn+1 be a λ–generated module, so there is a short

exact sequence 0 → K →֒ R(λ) π
→ M → 0.

Since M ∈ ⊥∞B ∩ Pn+1, we have K ∈ ⊥∞B ∩ Pn. Let Q = ⊥∞B ∩ P≤µ
n . By

assumption and Lemma 2.28, there is a set Sκ witnessing the κ–Q–separability
of K.

Denote by S ′
κ the set of all submodules N ⊆ M such that there is a subset

A ⊆ λ of cardinality < κ with π(R(A)) = N and K ∩ R(A) ∈ Sκ. By Lemma
1.30 and Corollary 2.30, Sκ ⊆ ⊥∞B ∩ P<κ

n , so S ′
κ ⊆ P<κ

n+1.
We claim that S ′

κ witnesses the κ–Q′
κ–freeness of M where Q′

κ = ⊥∞B∩P<κ
n+1.

Clearly 0 ∈ S ′
κ, and S ′

κ is closed under well–ordered unions of chains of length
< κ.

Let N = π(R(A)) ∈ S ′
κ. We have the following commutative diagram.

0 0 0
y

y
y

0 −−−−→ K ∩ R(A) ⊆
−−−−→ R(A) −−−−→ N −−−−→ 0

y⊆

y⊆

y⊆

0 −−−−→ K
⊆

−−−−→ R(λ) −−−−→ M −−−−→ 0
y

y
y

0 −−−−→ K/(K ∩ R(A)) −−−−→ R(λ\A) −−−−→ M/N −−−−→ 0
y

y
y

0 0 0.

Since K ∩R(A) ∈ Sκ, K/K ∩R(A) is Q–filtered, it follows for all B ∈ B that
Exti

R(K/K ∩ R(A), B) = 0 . Considering the exact sequence

0 = Exti
R(M,B) → Exti

R(N,B) → Exti+1
R (M/N,B)

∼= Exti
R(K/K ∩ R(A), B) = 0

for B ∈ B and i ≥ 1, we infer that S ′
κ ⊆ Q′

κ.
It remains to prove condition (iii) of Definition 2.27. Let X be a subset of

M of cardinality < κ. There is a subset A0 ⊆ λ of cardinality < κ such that
X ⊆ π(R(A0)). Let L0 = K ∩ R(A0). By Lemma 2.10, L0 is < κ–generated, so
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there exists K0 ∈ Sκ such that L0 ⊆ K0. Take A1 ⊇ A0 such that K0 ⊆ R(A1)

and |A1| < κ. Put L1 = K∩R(A1). Continuing in this way, we define a sequence
K0 ⊆ K1 ⊆ . . . of elements of Sκ, and a sequence A0 ⊆ A1 ⊆ . . . of subsets
of λ of cardinality < κ such that K ∩ R(Ai) ⊆ Ki and Ki ⊆ R(Ai+1) for all
i < ω. Then K ′ =

⋃
i<ω Ki ∈ Sκ and K ′ = K ∩R(A′), where A′ =

⋃
i<ω Ai. So

π(R(A′)) is an element of S ′
κ containing X, and S ′

κ witnesses the κ–Q′
κ–freeness

of M . This completes the proof of the claim.

Let C = ⊥∞B ∩ Pn+1. We will prove Fµ(C) by induction on λ = gen(M) for
all M ∈ C.

If λ ≤ µ, then K is ≤ µ-generated, and K ∈ (Mod-R)≤µ, by Lemma 2.10.
Since K ∈ ⊥∞B ∩ Pn, we infer that M ∈ C≤µ.

If λ > µ is regular, then we select from S ′
λ a λ–filtration, F , of M . Theorem

2.26 yields a λ–subfiltration, G, of F which is a ⊥B–filtration of M . Since
0 = Exti

R(N ′, B) → Exti+1
R (N/N ′, B) → Exti+1

R (N,B) = 0 for all modules
N,N ′ ∈ F with N ′ ⊆ N , B ∈ B and i ≥ 1, we have Exti

R(N/N ′,B) = 0 for all
i ≥ 2. So G is actually a ⊥∞B–filtration of M . By Lemma 2.11, M possesses a λ–
filtration, H, which is a P<λ

n+1–filtration of M . Let J be a common subfiltration
of G and H. Then J is a C<λ–filtration of M . By inductive hypothesis, we can
refine J to the desired C≤µ–filtration of M .

If λ > µ is singular, then, by inductive premise, S ′
κ witnesses the κ–C≤µ–

freeness of M for each regular uncountable cardinal µ < κ < λ. So the existence
of a C≤µ–filtration of M follows by Lemma 2.31.

By Theorem 2.24, any projective module over any ring is a direct sum of
countably generated modules. So Fµ(⊥∞B ∩ P0) holds for any class of modules
B and any µ ≥ ℵ0. Lemma 2.32 then gives:

Theorem 2.33. Let R be a ring, µ = dim(R), and B be a class of modules
closed under direct sums. Then for each n < ω, all modules in ⊥∞B ∩ Pn are
⊥∞B ∩ P≤µ

n –filtered.

Corollary 2.34. Let R be a ring and C = (A,B) be a hereditary cotorsion pair
such that A ⊆ P and B is closed under direct sums. Then C is complete.

Proof. If A ⊆ P, then there is n < ω with A ⊆ Pn. So Theorems 1.40 and
2.33 apply.

The dual result to Corollary 2.34 also holds true, though its proof requires
quite different techniques:

Theorem 2.35. Let R be a ring and C = (A,B) be a cotorsion pair such that
A is closed under direct products. Then A is definable and C is perfect, provided
either

(a) A is closed under pure submodules, or

(b) C is hereditary, and B ⊆ I.

For a proof, we refer to [68] and [70].

Now, we consider a particular case, namely approximations given by the
Matlis cotorsion and strongly flat modules over domains.
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Definition 2.36. Let R be a domain and Q be the quotient field of R. Let M
be a module.

(i) M is Matlis cotorsion provided that Ext1R(Q,M) = 0. Denote by MC the
class of all Matlis cotorsion modules.

(ii) M is strongly flat provided that Ext1R(M,N) = 0 for each Matlis cotorsion
module N . Denote by SF the class of all strongly flat modules. So
SF = ⊥MC. Clearly any projective module and any divisible torsion–free
module is strongly flat.

Since Q is a flat module (namely Q is the localization of R at 0), we have

I0 ⊆ RC ⊆ EC ⊆ MC

and hence
P0 ⊆ SF ⊆ FL ⊆ T F

for any domain R.
By Theorem 1.40, (SF ,MC) is a complete cotorsion pair (generated by Q).

This cotorsion pair is called the Matlis cotorsion pair.
Note that Mod–Q (= the class of all divisible torsion–free R–modules) is a

subclass of Mod–R closed under extensions and direct limits, (Mod–Q)⊥ = MC,
and Q is a

∑
–injective module. So Theorems 1.40 (a) and 1.23 give immediately

Corollary 2.37. Let R be a domain. Then each module has an MC–envelope,
and a special SF–precover.

There is an explicit description of this kind of cotorsion envelope for torsion–
free modules. It relies on the following result by Matlis [62] relating cotorsion
modules to R–completions:

Lemma 2.38. Let R be a domain and M be a torsion–free module. Then M
is Matlis cotorsion, if and only if M = Q(κ) ⊕N where κ ≥ 0 and N is reduced
and R–complete.

Proof. Since M is torsion–free, the divisible part of M equals
⋂

s∈S0
sM ,

where S0 = R \ {0}. Also, the divisible part of any torsion–free module is
isomorphic to Q(κ) for some κ ≥ 0, hence we can w. l. o .g. assume that M is
(S0–) reduced. So it remains to prove the following:

Lemma 2.39. Assume M is reduced and torsion–free. Then M is R–complete,
if and only if Ext1R(Q,M) = 0.

Proof. Assume M is not R–complete. Since M is reduced, the canonical

embedding ηM : M → M̂ yields an exact sequence 0 → M
ηM
−−→ M̂ −→ M̂/M →

0. Here, M̂ denotes the R–completion of M , so M is an RD–submodule of
M̂ , hence M̂/M is torsion–free, and also M̂/M is divisible. So M̂/M ∼= Q(κ)

for a cardinal κ > 0. However, ηM is non–split (since M̂ is reduced), so
Ext1R(Q,M) 6= 0.

Conversely, assume that M is R–complete and Ext1R(Q,M) 6= 0. Then there
is a non–split exact sequence 0 → M −→ N −→ Q → 0. Consider n ∈ N \ M .
Then for each s ∈ S0 there is ns ∈ N such that ms = n − sns ∈ M . Since for
each t ∈ T , mst − ms = sns − stnst ∈ sN ∩ M = sM , the net (ms | s ∈ S) is
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Cauchy, so has a limit m ∈ M , and m−n = (m−ms)− (n−ms) ∈ sN for each
s ∈ S0. Since M is reduced and the sequence does not split, N is also reduced,
so n = m ∈ M , a contradiction.

Example 2.40. Let R be a domain. Then any bounded module B is Matlis
cotorsion, because Ext1R(Q,B) is a bounded Q–module, so Ext1R(Q,B) = 0.

Let M be a reduced torsion–free module. By Lemma 2.38, M ∈ MC, iff M
is R–complete. So the R–completion of M , M̂ , is Matlis cotorsion, and M̂/M

is divisible and torsion–free. Hence M̂/M is strongly flat. So the MC–envelope

of M is just the inclusion ηM : M →֒ M̂ (minimality follows from the fact that

M̂ is reduced).
Similarly, the MC–envelope of an arbitrary torsion–free module N is just

the inclusion N →֒ D ⊕ M̂ where N = D ⊕ M and D is the largest divisible
submodule of N .

The algebraic structure of the R–completion can easily be expressed in ho-
mological terms:

Lemma 2.41. Let R be a domain and M be a reduced torsion–free module.
Then M̂ ∼= Ext1R(Q/R,M) and M̂/M ∼= Ext1R(Q,M). Moreover, if M = R(λ)

is free, then also M̂ ∼= HomR(Q/R, (Q/R)(λ))

Proof. Since M̂ is reduced and R–complete, applying the contravariant
Hom–functor HomR(−, M̂) to the exact sequence 0 → R −→ Q −→ Q/R → 0, we
get from Lemma 2.39 the following exact sequence

0 = HomR(Q, M̂) → HomR(R, M̂) → Ext1R(Q/R, M̂) → Ext1R(Q, M̂) = 0.

However, applying the covariant Hom–functor HomR(Q/R,−) to the exact se-

quence 0 → M −→ M̂ −→ M̂/M → 0, we obtain the exact sequence

0 = HomR(Q/R, M̂/M) → Ext1R(Q/R,M) →

→ Ext1R(Q/R, M̂) → Ext1R(Q/R, M̂/M) = 0,

because M̂/M ∼= Q(κ) for some κ ≥ 0. So M̂/M is torsion–free and injective.

It follows that M̂ ∼= HomR(R, M̂) ∼= Ext1R(Q/R, M̂) ∼= Ext1R(Q/R,M).

Similarly, since Ext1R(Q, M̂) = 0 = HomR(Q, M̂), we derive the group iso-

morphism Ext1R(Q,M) ∼= HomR(Q, M̂/M). Since HomR(Q/R, M̂/M) = 0 =

Ext1R(Q/R, M̂/M), also HomR(Q, M̂/M) ∼= HomR(Q, M̂/M) ∼= M̂/M . This

shows that M̂/M ∼= Ext1R(Q,M).
For M = R(λ), we also have the exact sequence

0 = HomR(Q/R,Q(λ)) → HomR(Q/R, (Q/R)(λ)) →

→ Ext1R(Q/R,M) → Ext1R(Q/R,Q(λ)) = 0,

proving the last assertion.

The coincidence of the various classes of flat (and cotorsion) modules char-
acterizes Prüfer and Dedekind domains. Before proving this, we recall a result
of Warfield:

45



Lemma 2.42. Let R be a domain. Then RC = MC ∩ I1. Moreover, T F =
⊺(F1), so the Warfield cotorsion pair is cogenerated by the class of all pure–
injective modules of injective dimension ≤ 1.

Proof. Let M ∈ RC. Then Ext1R(I,M) = 0, hence Ext2R(R/I,M) = 0, for
each ideal I of R. By Lemma 1.33, M ∈ I1. Conversely, let M ∈ MC ∩ I1

and N ∈ T F . The injective hull of N is isomorphic to Q(κ) for a cardinal κ.
Applying HomR(−,M) to the exact sequence 0 → N −→ Q(κ) −→ Q(κ)/N → 0,
we get 0 = Ext1R(Q(κ),M) → Ext1R(N,M) → Ext2R(Q(κ)/N,M) = 0, so M ∈
RC.

Since pure–injective modules are Matlis cotorsion, we have T F ⊆ ⊥(PI∩I1).
Conversely, let M ∈ ⊥(PI ∩ I1) = ⊥(D ∩ I1), where D denotes the class of all
character modules of all left R–modules. Note that a module N c has injective
dimension ≤ 1, iff N has weak dimension ≤ 1, by Lemma 1.31 (b). So M ∈ ⊺F1.
Since {R/Rr | r ∈ R} ⊆ F1, we conclude that M ∈ T F .

Lemma 2.43. Let R be a domain and n > 0. Then Fn = ⊥n(DI ∩ PI).
In particular, the cotorsion pair (F1, (F1)

⊥) is cogenerated by the class of all
divisible pure–injective modules.

Proof. We have Fn = ⊥n+1PI = ⊥nC1 where C1 is the class of all 1–st
cosyzygies of all pure–injective modules. Since R is a domain, C1 ⊆ DI. By
Lemma 1.49, we get Fn ⊇ ⊥n(DI ∩ PI).

Conversely, let M ∈ Fn and let N be a module such that N c ∈ DI. Then
N ∈ T F = ⊺(F1) by Lemma 2.42. So 0 = TorR

1 (Ωn−1(M), N) ∼= TorR
n (M,N).

Since ⊥n(DI ∩ PI) = ⊥n(DI ∩D) where D is the class of all dual modules, we
conclude that Fn ⊆ ⊥n(DI ∩ PI).

Theorem 2.44. Let R be a domain. The following conditions are equivalent:

(a) R is a Dedekind domain;

(b) The classes of all Warfield, Enochs, and Matlis cotorsion modules coin-
cide;

(c) The classes of all torsion–free, flat, and strongly flat modules coincide.

Proof. Clearly (b) is equivalent to (c). Also, if R is Dedekind, that is,
hereditary, then Lemma 2.42 shows that RC = MC (= EC). So it suffices to
prove that (b) implies (a):

Consider a torsion–free module F and 0 6= r ∈ R. We have the exact
sequence 0 → F

ν
−→ F −→ F/rF → 0 where ν is the multiplication by r. Since

F/rF is bounded, we have F/rF ∈ MC ⊆ I1 by assumption and by Lemma
2.42. So Ext2R(M,F/rF ) = 0 for any module M . So the map Ext2R(M,ν) :
Ext2R(M,F ) → Ext2R(M,F ) (which is again multiplication by r) is surjective.
It follows that Ext2R(M,F ) is divisible. However, taking M = R/I for an ideal
I, we get that Ext2R(R/I, F ) is bounded, and hence Ext2R(R/I, F ) = 0. This
gives inj dim F ≤ 1.

Finally, for any module N , the torsion–free cover π of N yields an exact
sequence 0 → W −→ F

π
−→ N → 0 where F is torsion–free and W is Warfield

cotorsion. Since I1 is a coresolving class, we conclude that inj dim N ≤ 1. This
proves that R is hereditary.
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Theorem 2.45. Let R be a domain. The following conditions are equivalent:

(a) R is a Prüfer domain;

(b) w gl dimR ≤ 1;

(c) The classes of all Warfield and Enochs cotorsion modules coincide;

(d) The classes of all torsion–free and flat modules coincide;

(e) All pure–injective modules have injective dimension ≤ 1.

Proof. Assume (a). Let I be an ideal of R. Since I is a direct limit
of finitely generated, and hence projective, ideals, I is flat. It follows that
TorR

2 (R/I,M) = 0 for any module M . By the Flat Test Lemma this implies
that submodules of flat modules are flat, so (b) holds true.

Assume (b). Then submodules of flat modules are flat. Since Q is flat, we
see that (d) holds. Clearly (d) is equivalent to (c).

Assume (d). Since torsion–free modules are always closed under direct prod-
ucts, a classic result of Chase gives that R is a coherent ring. (d) also implies
that each right ideal I of R is flat. If I is finitely generated, then I is finitely
presented (and flat), hence projective. So (a) holds true.

Finally, for any ring R, any pure–injective module I is a direct summand
in the dual module Icc, so the weak global dimension of R is the supremum
of injective dimensions of all pure–injective modules by Lemma 1.31 (b). In
particular, (b) and (e) are equivalent for any ring R.

Before turning to the remaining case of FL = SF , we need more informa-
tion about the structure of the strongly flat modules. Since Q is

∑
–injective,

Corollary 1.41 immediately yields the following characterization.

Corollary 2.46. Let R be a domain. A module M is strongly flat, if and only
if there exist cardinals κ and λ and an extension 0 → R(κ) −→ N −→ Q(λ) → 0
such that M is a direct summand of N .

In particular, proj dim M ≤ proj dim Q for any strongly flat module M .
Moreover, if M is strongly flat, then Mp = M ⊗R Rp is a strongly flat Rp–
module for each p ∈ specR.

Now we can determine the structure of the kernels of the three cotorsion
pairs (in the particular case of valuation domains, Corollary 2.46 and Theorem
2.47 (c) can substantially be improved — see Theorem 2.53 and Corollary 2.54
below):

Theorem 2.47.

(a) Assume R is a right coherent ring. Then the kernel of the Enochs cotorsion
pair coincides with the class of all pure–injective flat modules. If R is
commutative and noetherian, then the kernel consists of all modules of
the form

∏
p∈spec R Cp, where Cp denotes the p-adic completion of the free

module R
(αp)

(p) (αp ≥ 0) for each 0 6= p ∈ spec R, and Cp = R
(α)
(p) (α ≥ 0)

for 0 = p ∈ specR, respectively.
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(b) Assume R is a domain. Then the kernel of the Warfield cotorsion pair co-
incides with the class of all pure–injective torsion–free modules of injective
dimension ≤ 1.

(c) Assume R is a domain. Then the kernel of the Matlis cotorsion pair

consists of all direct summands of modules of the form Q(κ) ⊕ R̂(λ) for
some cardinals κ and λ.

Proof. (a) Let M be flat and cotorsion. Then the character module M c

is injective, and (M c)c is flat. Since the embedding M →֒ (M c)c is pure, also
(M c)c/M is flat. Since M is cotorsion, the sequence 0 → M −→ (M c)c −→
(M c)c/M → 0 splits. So M is a direct summand in a dual module, hence M
is pure–injective. The second statement follows from Enochs’ classification of
pure–injective flat modules over commutative noetherian rings, see [40, §5.3].

(b) Let C = Q⊕Kc where K = Q/R. Since K is divisible, Kc is torsion–free,
so Cogen(C) = T F . Moreover, ⊥C = ⊥Kc = ⊺K = T F , so C is a 1–cotilting
module. By Lemma 3.39, the kernel of the Warfield cotorsion pair coincides with
Prod(C). Since C is torsion–free, pure–injective, and of injective dimension ≤ 1,
the same is true for any module in the kernel. The reverse inclusion follows by
Lemma 2.42, since PI ⊆ EC ⊆ MC.

(c) Let P ∈ SF ∩MC. By Corollaries 1.41 and 2.46, P is a direct summand
in a module N such that N is Matlis cotorsion and there is an exact sequence

0 → R(λ) → N → Q(λ′) → 0 (2.1)

for some cardinals λ and λ′. Since N is torsion–free, we have N ∼= Q(κ) ⊕ N ′

for a cardinal κ and a reduced torsion–free module N ′. Since ExtR(Q,N ′) = 0,
we have N ′ ∼= HomR(R,N ′) ∼= ExtR(Q/R,N ′). From (2.1), we get

ExtR(Q/R,R(λ)) ∼= ExtR(Q/R,N ′).

By Lemma 2.41, ExtR(Q/R,R(λ)) ∼= R̂(λ), so N ∼= Q(κ) ⊕ R̂(λ).

Conversely, let N = Q(κ)⊕ R̂(λ) for some κ and λ. Applying HomR(−, R(λ))
to the exact sequence 0 → R → Q → Q/R → 0, we get

0 = HomR(Q,R(λ)) → R(λ) → ExtR(Q/R,R(λ)) → ExtR(Q,R(λ)) → 0. (2.2)

Since ExtR(Q,R(λ)) is a Q–module, we have ExtR(Q,R(λ)) ∼= Q(κ′) for a cardi-

nal κ′. Since ExtR(Q/R,R(λ)) ∼= R̂(λ), (2.2) induces a presentation of N of the
form (2.1). By Proposition 2.46, N ∈ SF . By Lemma 2.38, also N ∈ MC.

It follows that any direct summand of N belongs to MC ∩ SF .

For any domain R the classes of all flat and torsion–free modules are resolv-
ing. This may fail for the class of all strongly flat modules. The corresponding
characterization goes back to Matlis:

Lemma 2.48. Let R be a domain. Then the following conditions are equivalent:

(a) R is a Matlis domain;

(b) The class of all strongly flat modules is resolving;

(c) The class of all Matlis cotorsion modules is coresolving.
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Proof. We assume (a). Then Extn
R(Q,−) = 0 for each n > 1 and it also

follows Extn
R(M,−) = 0 for each M ∈ SF by Corollary 1.41. Application of

Lemma 1.20, then gives (b).
(b) implies (c) by Lemma 1.20.
(c) implies (a): for a module M , denote by h(M) the trace of Q in M . (So M
is h–divisible, if h(M) = M , and h–reduced, if h(M) = 0.)

First we prove that Ext1R(K,M) is h–reduced for each module M , where
K = Q/R. From the exact sequence 0 → M −→ E(M) −→ E(M)/M → 0, we get
the exact sequence 0 → A −→ B −→ Ext1R(K,M) → 0, where
A = HomR(K,E(M))/HomR(K,M) and B = HomR(K,E(M)/M). Since K is
torsion, B is h–reduced. So it suffices to prove that A is Matlis cotorsion. Since
K is torsion, HomR(K,E(M)) is Matlis cotorsion by Lemma 1.31 (b). Since
A is isomorphic to a submodule of HomR(K,E(M)/M) which is h–reduced,
also A is h–reduced. It follows that HomR(K,M) is Matlis cotorsion. Now
the assumption (c) gives that A is also Matlis cotorsion. This implies that
Ext1R(K,M) is h–reduced.

Applying HomR(−,M) to the exact sequence 0 → R −→ Q −→ K → 0, we get
the following two exact sequences:

0 → HomR(K,M) −→ HomR(Q,M) −→ h(M) → 0

and
0 → M/h(M) −→ Ext1R(K,M) −→ Ext1R(Q,M) → 0.

From the latter we infer that M/h(M) is h–reduced for any module M .

Next consider an exact sequence 0 → T −→ M
π
−→ Q → 0, where T is torsion

and h–divisible. Then T is the torsion part of M . Since T ⊆ h(M), there is
an epimorphism Q ∼= M/T → M/h(M). Since M/h(M) is h–reduced, we infer
that M = h(M) is h–divisible.

We will prove that the torsion part of M splits, so Ext1R(Q,T ) = 0: by
assumption, there are a cardinal κ and an epimorphism ρ : Q(κ) → M . Take
m1 ∈ M and q1 ∈ Q(κ) such that π(m1) = 1 and ρ(q1) = m1. We will prove
that T ⊕ ρ(q1Q) = M . First let m ∈ M \ T . Then (m + T )s = (m1 + T )r for
some non–zero r, s ∈ R, so there exists t ∈ T such that ms − m1r = t. Since
T is divisible, there is t′ ∈ T with t = t′s. So (m − t′)s = m1r = ρ(q1r), and
ms = ρ(q1rs

−1)s + t′s. Put d = m − ρ(q1rs
−1) + t′. Then d ∈ M and ds = 0,

so d ∈ T , and m ∈ T + ρ(q1Q). However, T ∩ ρ(q1Q) = 0, if t = ρ(q1rs
−1)

is an arbitrary element of the intersection, then ts = ρ(q1r) = m1r ∈ T , so
0 = π(ts) = r.

Finally, Ext2R(Q,N) ∼= Ext1R(Q,T ) = 0, where T = E(N)/N is torsion and
h–divisible, for any module N . So proj dimQ ≤ 1.

We also note the following relation between strongly flat modules and R–
completions:

Proposition 2.49. Let R be a domain and M ∈ Mod–R. Consider the follow-
ing conditions:

(a) M is strongly flat.

(b) M ∼= Q(κ) ⊕N where N is reduced torsion–free and N̂ is isomorphic to a

direct summand of R̂(λ), for some cardinals κ and λ.
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Then (a) implies (b). If R is a Matlis domain, then (b) implies (a).

Proof. (a) implies (b): let M be strongly flat. Since M is torsion–free,

M ∼= Q(κ) ⊕ N where N is reduced and torsion–free. Then N →֒ N̂ is an

MC–envelope of N . Moreover, N̂ is strongly flat, so N̂ ⊕ X = Q(ρ) ⊕ R̂(λ) for
a module X and cardinals ρ and λ, by Theorem 2.47. Applying the functor

Ext1R(Q/R,−), we get from Lemma 2.41 that N̂ ⊕ X̂ ∼= R̂(λ).

(b) implies (a): by Theorem 2.47 (c), N̂ is strongly flat. Moreover, there is

a cardinal σ such that 0 → N −→ N̂ −→ Q(σ) → 0 is exact. By assumption and
Lemma 2.48, SF is resolving, whence N is strongly flat.

We arrive at the remaining case of coincidence, characterized by Bazzoni
and Salce in [25]. It turns out that the relevant domains here are the almost
perfect ones:

Definition 2.50. Let R be a commutative ring. Then R is almost perfect,
provided that R/I is a perfect ring for each (principal) ideal 0 6= I 6= R.

It is easy to see that an almost perfect domain cannot contain a strictly
increasing chain of principal ideals (otherwise, if 0 6= Rr0 ( Rr1 ( . . . is such
a chain with ri = siri+1 for all i < ω, then Rs0 ) Rs1s0 ) . . . is a strictly
decreasing chain of principal ideals containing Rr0, hence R/Rr0 is not perfect).
In particular, a valuation domain R is almost perfect, iff R is noetherian.

Any noetherian domain R of Krull dimension ≤ 1 is almost perfect, since
then R/I is artinian for each 0 6= I 6= R. In fact, a coherent domain is almost
perfect, iff it is noetherian of Krull dimension ≤ 1 (see [24, §4]).

Theorem 2.51. Let R be a domain. The following conditions are equivalent:

(a) R is almost perfect;

(b) The classes of all flat and strongly flat modules coincide;

(c) The classes of all Matlis and Enochs cotorsion modules coincide.

For a proof of Theorem 2.51 we refer to [24, §4].

Corollary 2.52. Let R be a ring. Then R is a Dedekind domain, if and only
if R is a Prüfer domain which is almost perfect.

Proof. By Theorems 2.44, 2.45 and 2.51.

Corollary 2.37 suggests the question of the existence of strongly flat covers
of modules over domains. The (trivial) sufficient condition for the existence is
SF = FL. Bazzoni and Salce proved that this condition is also necessary. In
other words, all modules have strongly flat covers, iff R is almost perfect (cf.
[24]).

Strongly flat modules over a domain are characterized in Corollary 2.46
as the direct summands of extensions of free modules by torsion–free divisible
modules.

The drawback of this characterization is in dealing with direct summands.
This is of course necessary in general: projective modules need not be extensions
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of free modules by torsion–free divisible modules. In fact, direct summands have
to be considered, even when projective modules coincide with the free ones: for
example, the group (Z–module) of all p–adic integers Jp is (strongly) flat, but
it is easily seen not to be an extension of a free group by a divisible torsion–free
group.

There is a case where we do not have to consider direct summands, namely
when R is a valuation domain. A proof of this fact appears in [72] and relies on
an application of the rank version of the Hill Lemma 2.21:

Theorem 2.53. Let R be a valuation domain and M be a module. Then M is
strongly flat, if and only if M is an extension of a free module by a torsion–free
divisible module.

Corollary 2.54. Let R be a valuation domain. Then the reduced strongly flat
Matlis cotorsion modules coincide with the R–completions of free modules. So
the kernel of the Matlis cotorsion pair consists of all modules of the form Q(κ)⊕

R̂(λ) for some cardinals κ and λ.

Let R be any ring and C be any class of modules. Recall that lim
−→

C denotes
the class of all modules D ∈ Mod–R such that D = lim

−→i∈I
Ci, where {Ci, fji |

i ≤ j ∈ I} is a direct system of modules from C. Recall also that a cotorsion
pair (A,B) is closed provided that A = lim

−→
A.

The cotorsion pair (Mod–R, I0) is closed, and if (Ai,Bi) (i ∈ I) are closed
cotorsion pairs, then (

⋂
i∈I Ai, (

⋂
i∈I Ai)

⊥), is also closed. So for each cotorsion

pair C = (A,B) there is a least cotorsion pair C = (A,B) such that C is closed
and A ⊆ A. C is called the closure of the cotorsion pair C.

The interesting case is when the closure of a cotorsion pair is complete –
then the closure is perfect by Corollary 1.28, that is, the closure provides for
envelopes and covers of modules.

Our next goal is to show that this happens when C is generated by a class
of FP2–modules C (and in particular, when C is generated by a class of finitely
presented modules over a right coherent ring). As a by–product, we will describe
the class lim

−→
C in homological terms by showing that lim

−→
C = ⊺(C⊺). These

results come from [8].
We start with several basic properties of the classes lim

−→
C. The case when C

consists of finitely presented modules is well-known from the classical work of
Lenzing:

Lemma 2.55. Let R be a ring and C be a class of finitely presented modules
closed under finite direct sums. Then the following are equivalent for a module
M .

(a) M ∈ lim
−→

C.

(b) There is a pure epimorphism f :
⊕

i∈I Ci → M for a sequence (Ci | i ∈ I)
of modules in C.

(c) Every homomorphism h : F → M , where F is finitely presented, has a
factorization through a module in C.
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Moreover, lim
−→

C is closed under direct limits, pure submodules and pure epimor-
phic images, and the finitely presented modules in lim

−→
C are exactly the direct

summands of modules in C.

We will also need the following result by Crawley–Boevey [33] (recall that
a class C ⊆ Mod–R is definable, provided that C is closed under direct limits,
direct products and pure submodules):

Lemma 2.56. Let R be a right coherent ring, and C be a class of finitely
presented modules such that C = add(C). Then the following are equivalent:

(a) C is covariantly finite in mod–R;

(b) lim
−→

C is closed under direct products;

(c) lim
−→

C is definable;

(d) lim
−→

C is a preenveloping class.

Proof. (a) implies (b): let (Ci | i ∈ I) be a sequence of modules in C.
Let M =

∏
i∈I Ci and let f : F → M be a homomorphism with F finitely

presented. Let g : F → C be a C–preenvelope of F . Then for each i ∈ I,
there is hi : C → Ci such that hig = πif , where πi : M → Ci is the canonical
projection. So there is h : C → M such that hi = πih for all i ∈ I. Then
f = hg, so M ∈ lim

−→
C by Lemma 2.55.

(b) implies (c): by Lemma 2.55, lim
−→

C is closed under direct limits and pure
submodules, so lim

−→
C is definable.

(c) implies (d): let M ∈ Mod–R and let κ = |M |+ |R|+ ℵ0. Denote by S a
representative set of all ≤ κ–generated modules in lim

−→
C. Consider the canonical

map f : M → L where L =
∏

N∈S NHomR(M,N) ∈ lim
−→

C by assumption. Then
any morphism g : M → N with N ∈ S factors through f . Let L′ ∈ lim

−→
C and

f ′ : M → L′. Then |Im f ′| ≤ κ, so there is a pure submodule, N ′, of L′ such
that Im f ′ ⊆ N ′ and |N ′| ≤ κ (cf. Lemma 1.45 (a)). By assumption, N ′ ∈ lim

−→
C,

so N ′ ∼= N for some N ∈ S. It follows that f ′ factors through f . This proves
that f is a lim

−→
C–preenvelope of M .

(d) implies (a): let f : M → L be a lim
−→

C–preenvelope of a module M ∈
mod–R. By Lemma 2.55, there are C ∈ C, g : M → C and h : C → L such that
f = hg. We prove that g is a C–preenvelope of M in mod–R. Let g′ : M → C ′

where C ′ ∈ C. Then g′ = h′f for some h′ : L → C ′, so g′ = h′hg.

If R is a right noetherian ring, then there is a simple relation between torsion
pairs in Mod–R and mod–R:

Lemma 2.57. Let R be a right noetherian ring.

(a) Let (T ,F) be a torsion pair in Mod–R. Then (T <ω,F<ω) is a torsion
pair in mod–R.

(b) Let (C,D) be a torsion pair in mod–R. Then (lim
−→

C, lim
−→

D) is a torsion
pair in Mod–R. Moreover, lim

−→
C = Gen(C) and lim

−→
D = KerHomR(C,−).
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Proof. (a) Let M ∈ mod–R be such that HomR(M,F<ω) = 0. Since each
N ∈ F is a directed union of its finitely generated submodules (in F<ω) and R
is right noetherian, we have HomR(M,F) = 0 by Lemma 1.34, so M ∈ T <ω.

Conversely, let N ∈ mod–R be such that HomR(T <ω, N) = 0. Assume
there is 0 6= f ∈ HomR(T,N) where T ∈ T . Then Imf ∈ T <ω, since R is right
noetherian, a contradiction. So HomR(T , N) = 0, and N ∈ F<ω.
Since HomR(T <ω,F<ω) = 0, the claim follows.
Next we show (b): by Lemma 1.34, HomR(C, lim

−→
D) = 0. If M ∈ lim

−→
C, then

HomR(M, lim
−→

D) = 0 by Lemma 2.55. So HomR(lim
−→

C, lim
−→

D) = 0.
If M ∈ Ker HomR(C,−), then each finitely presented submodule of M be-

longs to D, hence M ∈ lim
−→

D. It follows that

lim
−→

D = Ker HomR(C,−) = Ker HomR(lim
−→

C,−).

Let M be any module and let S be the direct system of all its finitely
presented submodules. For F ∈ S, denote by t(F ) ∈ C the torsion part of F .
There is an exact sequence 0 → t(F ) −→ F −→ F/t(F ) → 0 with F/t(F ) ∈ D.
Since t(F ) ⊆ t(G) for all F ⊆ G ∈ S, we get the induced direct system of
exact sequences whose direct limit is 0 → lim

−→
t(F ) → M → lim

−→
F/t(F ) → 0. In

particular, if M ∈ Ker HomR(−, lim
−→

D), then M ∼= lim
−→

t(F ) ∈ lim
−→

C.
Finally, being a torsion class containing C, lim

−→
C contains Gen(C). The re-

verse inclusion follows from the fact that any direct limit is canonically a (pure–)
epimorphic image of a direct sum.

Lemma 2.57 will be essential for characterizing 1–cotilting classes over noethe-
rian rings in chapter 3.

Definition 2.58. Let C be a class of modules. We will denote by C̃ the class of
all pure–epimorphic images of elements of C. Note that C∩mod–R = C̃∩mod–R,
if C is closed under direct summands. For example, if (A,B) is a complete

cotorsion pair, then the class Ã coincides with the class of all modules M such
that each (or some) special A–precover of M is a pure epimorphism.

Note that lim
−→

C ⊆ ⊺(C⊺), and C̃ ⊆ ⊺(C⊺), since ⊺(C⊺) is obviously closed
under direct limits and pure–epimorphic images. Moreover, we have

Lemma 2.59. Let R be a ring, C be a class of modules, and (A,B) be the
cotorsion pair generated by C. Denote by D the class of all dual modules (=
character modules of left R–modules). Then

(a) ⊺(C⊺) = ⊥(B ∩ D) = ⊺(A⊺).

(b) Assume C is closed under direct sums. Then lim
−→

C ⊆ C̃ ⊆ ⊺(C⊺).

(c) Assume that C consists of FP2–modules. Then M ∈ B, iff Mdd ∈ B for
any module M . In particular, ⊺(C⊺) = ⊥(B ∩ PI).

Proof. (a) Let M be a module. By Lemma 1.31 (b), M ∈ ⊺(C⊺), iff M ∈
⊥Nd for all N ∈ C⊺. Moreover, N ∈ C⊺, iff Nd ∈ C⊥ ∩ D = B ∩ D. For C = A,
we get in particular that ⊺(A⊺) = ⊥(B ∩ D).

(b) This is clear, since the assumption implies that C̃ is closed under direct
limits.
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(c) Let M be a module. By Lemma 1.31 (d), M ∈ B, iff Md ∈ C⊺, iff
Mdd ∈ B.

Since each pure–injective module M is a direct summand in Mdd, we have
⊥(B ∩ D) = ⊥(B ∩ PI), and the assertion follows from part (a).

Lemma 2.60. Let R be a ring. Let C = (A,B) be a complete cotorsion pair

such that B is closed under dd. Then Ã = ⊺(A⊺).

Proof. Let M ∈ ⊺(C⊺). By Lemma 2.59 (b), M ∈ ⊥(B ∩ D). Let 0 →

B
µ
−→ A −→ M → 0 be an exact sequence with A ∈ A and B ∈ B. Consider the

canonical pure embedding ν : B → Bdd and take the pushout of µ and ν:

0 −−−−→ B
µ

−−−−→ A −−−−→ M −−−−→ 0

ν

y η

y
∥∥∥

0 −−−−→ Bdd τ
−−−−→ N −−−−→ M −−−−→ 0.

By assumption, Bdd ∈ B∩D, so the bottom row splits. It follows that ν factors
through µ, hence µ is a pure monomorphism, and M ∈ Ã.

By Lemma 2.59, each cotorsion pair C = (A,B) is contained in the complete
and closed cotorsion pair cogenerated by the class B∩D. We will now investigate
whether the latter is the closure of C. As a by–product, we obtain a homological
description of the class lim

−→
C in the case when C consists of FP2–modules:

Theorem 2.61. Let R be a ring. Let C be a class consisting of FP2–modules
such that C is closed under extensions, direct summands and R ∈ C. Then
lim
−→

C = ⊺(C⊺) is a covering class.
Furthermore, if C = (A,B) is the cotorsion pair generated by C, then lim

−→
C =

lim
−→

A = Ã = ⊺(A⊺).

Proof. By Lemmas 2.59 (b) and 2.60, Ã = ⊺(A⊺) = ⊺(C⊺).
Now we show that A ⊆ lim

−→
C. First the isomorphism classes of C form a set,

so A consists of all direct summands of C–filtered modules by Corollary 1.42. By
Lemma 2.55, lim

−→
C is closed under direct limits, hence under direct summands.

So it suffices to prove that lim
−→

C contains all C–filtered modules.
We proceed by induction on the length δ of the filtration. The cases when

δ = 0 and δ is a limit ordinal are clear (the latter by Lemma 2.55). Let δ be

non–limit, so we have an exact sequence 0 → A
f
−→ B

g
−→ C → 0 with A ∈ lim

−→
C

and C ∈ C. We will apply Lemma 2.55 to prove that B ∈ lim
−→

C.
Let h : F → B be a homomorphism with F finitely presented. Since C is

FP2, there is a presentation 0 → G −→ P
p
−→ C → 0 with P finitely generated

projective and G finitely presented. There is also q : P → B such that p = gq.
We have the commutative diagram

0 −−−−→ F ′ f ′

−−−−→ F ⊕ P
(gh)⊕p
−−−−−→ C −−−−→ 0

h′

y h⊕q

y
∥∥∥

0 −−−−→ A
f

−−−−→ B
g

−−−−→ C −−−−→ 0.
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Considering the pullback of p and (gh)⊕ p, we see that the pullback module U
is an extension of G by F ⊕ P , and F ′ is isomorphic to a direct summand in
U . So U , and F ′, are finitely presented. Since A ∈ lim

−→
C, Lemma 2.55 provides

for a module C ′ ∈ C and maps σ′ : F ′ → C ′, τ ′ : C ′ → A such that h′ = τ ′σ′.
Consider the pushout of f ′ and σ′:

0 −−−−→ F ′ f ′

−−−−→ F ⊕ P
gh⊕p

−−−−→ C −−−−→ 0

σ′

y σ

y
∥∥∥

0 −−−−→ C ′ ρ
−−−−→ D −−−−→ C −−−−→ 0.

By assumption, D ∈ C. By the pushout property, there is τ : D → B such that
τσ = h ⊕ q, hence τσ ↾ F = h. So h factors through D, and B ∈ lim

−→
C.

Now, since lim
−→

C is closed under pure–epimorphic images by Lemma 2.55,

we infer that Ã ⊆ lim
−→

C. So, by Lemma 2.59, lim
−→

C = lim
−→

A = Ã.
Finally, lim

−→
C is a covering class by Theorem 1.48.

Note that in the setting of Theorem 2.61, the class A = ⊥(C⊥) consists of
all direct summands of C–filtered modules, while lim

−→
A = lim

−→
C = ⊺(C⊺) of all

pure–epimorphic images of C–filtered modules. Both classes contain the same
finitely presented modules, namely the modules in C.

Theorem 2.61 may fail, if C does not consist of FP2–modules. For example,
if R is a domain and Q is its quotient field, then C = Mod–Q is a subclass
of Mod–R closed under direct limits, but A = ⊥(C⊥) = SF , the class of all
strongly flat modules, while ⊺(C⊺) = FL, the class of all flat modules. So, if R
is not almost perfect, then C = lim

−→
C ( A ( ⊺(C⊺) = ⊺(A⊺).

Corollary 2.62. Let R be a ring and C = (A,B) be a cotorsion pair generated
by a class of FP2–modules. (For example, let R be right coherent and C be
generated by a class of finitely presented modules.) Then the closure C = (A,B)
of C is cogenerated by the class B ∩ PI. In particular, C is perfect, and A =
lim
−→

A = Ã = ⊺(A⊺).

Proof. If C is generated by a class of FP2–modules D, we let C be the
smallest class of modules closed under extensions and containing D∪{R}. Then
C also consists of FP2–modules, and it generates C. So Theorem 2.61 gives
lim
−→

A = ⊥(B∩PI) and C = (lim
−→

A, (lim
−→

A)⊥). Finally, C is perfect by Theorem
1.48.

We finish by a result that will be essential for a characterization of 1–cotilting
classes of cofinite type in chapter 3:

Lemma 2.63. Let R be a ring and (A,B) be a cotorsion pair such that A ⊆ P1.
Then A ⊆ lim

−→
A<ω.

Proof. Let A ∈ A. By assumption and by Eilenberg’s trick, there is an
exact sequence 0 → F ⊆ G → A → 0 where F and G are free modules. Let
{xα | α < κ} and {yβ | β < λ} be free bases of F and G, respectively. W.l.o.g.,
κ is infinite. For each finite subset S ⊆ κ, let S′ be the least (finite) subset
of λ such that FS =

⊕
α∈S xαR ⊆ GS =

⊕
β∈S′ yβR. Then F is a directed

union of its summands of the form FS , where S runs over all finite subsets of

55



κ. Let AS = GS/FS . Then AS ∈ P<ω
1 , and A = P ⊕ H, where P is free and

H = lim
−→S

AS . So it remains to prove that H ∈ lim
−→

A<ω.

We will show that AS ∈ A<ω for each finite subset S ⊆ κ. Take an arbitrary
B ∈ B. Then any homomorphism from F to B extends to G. Let ϕ be a
homomorphism from FS to B. Since FS is a direct summand in F , ϕ extends
to F , hence to G, and GS . It follows that B ∈ {AS}

⊥, so AS ∈ A<ω, and
H ∈ lim

−→
A<ω.

In general, Lemma 2.63 fails for n > 1, even for A = Pn. Smalø constructed
for each n > 1 a finite dimensional algebra Rn such that lim

−→
P<ω

n = P1 ( Pn

(see [69]).

3 Tilting and cotilting modules

We start with a definition of a (infinitely generated) tilting module:

Definition 3.1. Let R be a ring. A module T is tilting provided that

(T1) T has finite projective dimension (that is, T ∈ P),

(T2) Exti
R(T, T (κ)) = 0 for all 1 ≤ i < ω and all cardinals κ, and

(T3) There are r ≥ 0 and a long exact sequence 0 → R → T0 → . . . → Tr → 0,
where Ti ∈ Add(T ) for all i ≤ r.

If n < ω and T is tilting of projective dimension ≤ n, then T is called n–tilting.
The class T⊥∞ is called the n–tilting class induced by T . Clearly (⊥(T⊥∞), T⊥∞)
is a hereditary cotorsion pair, called the n–tilting cotorsion pair induced by T .
If T and T ′ are tilting modules, then T is said to be equivalent to T ′ provided
that the induced tilting classes coincide, that is, T⊥∞ = (T ′)⊥∞ .
A ring S is called tilted from R, if there is a tilting module T such that S ∼=
End(TR).

A tilting module T is classical tilting, iff T satisfies the following stronger
version of condition (T1):

(T1′) T ∈ P<ω.
In view of Lemma 1.34, classical tilting modules can equivalently be defined

as the modules T satisfying conditions (T1′), (T2′) and (T3′), where (T2′) says
that Exti

R(T, T ) = 0 for all 1 ≤ i < ω, and (T3′) is obtained from (T3) by
replacing Add(T ) with add(T ).

Classical tilting modules are of particular importance. The fundamental re-
sult of classical tilting theory – the Tilting Theorem – says that for any classical
tilting module T and any i ≤ n = proj dim T there is a tilting category equiv-
alence between the categories

⋂
j 6=i Ker Extj

R(T,−) and
⋂

j 6=i Ker TorS
j (−, T )

(where S = End(TR)):

⋂

j 6=i

Ker Extj
R(T,−)

Exti
R(T,−)

⇄
TorS

i
(−,T )

⋂

j 6=i

Ker TorS
j (−, T ) . (3.1)

56



In fact, if T is a classical n–tilting right R–module, then T is necessarily also
a classical tilting left S–module, and the bimodule STR is faithfully balanced
(so T is a tilting bimodule) – see [65].

Rather than studying equivalences induced by classical tilting modules, we
will concentrate here on relations between tilting theory of (infinitely generated)
tilting modules over arbitrary rings on the one hand, and the approximation
theory on the other.

Clearly 0–tilting modules coincide with (possibly infinitely generated) pro-
jective generators.

We will now present several examples of infinitely generated 1–tilting mod-
ules that naturally occur in various parts of module theory.

Example 3.2. Let R be a domain, and S a multiplicative subset of R. Let
δS = F/G, where F is the free module with the basis given by all sequences
(s0, . . . , sn) where n ≥ 0, and si ∈ S for all i ≤ n, and the empty sequence w =
(); the submodule G is generated by the elements of the form (s0, . . . , sn)sn −
(s0, . . . , sn−1), where 0 < n and si ∈ S for all i ≤ n, and of the form (s)s − w,
where s ∈ S.

It is easy to see that G is free, so δS has projective dimension ≤ 1.
By definition, δS is S–divisible (that is, for each s ∈ S, δSs = δS , or equiva-
lently, Ext1R(R/sR, δS) = 0). Moreover, δS =

⋃
n<ω δi, where δ0 = wR ∼= R

and δi+1/δi is isomorphic to the direct sum of copies of the cyclically pre-
sented modules R/sR with s ∈ S, for each i < ω. From Lemma 1.30 follows

Ext1R(δS , δ
(κ)
S ) = 0 for any cardinal κ.

For x ∈ F , denote by x̄ ∈ δS the coset of x in F/G. Define µ : δS →
δS by µ(w̄) = 0, and µ(x̄) = (1, x) for x̄ 6= w̄. Then Ker(µ) = wR, so µ
induces an embedding ν : δS/wR → δS . Conversely, define π : δS → δS/wR
by π((s0, . . . , sn)) = (s1, . . . , sn) + wR for 0 < n and si ∈ S (i ≤ n), and
π((s)) = π(w) = 0 for s ∈ S. Then πν = id, so δS/wR is a direct summand of
δS . It follows that δS is a 1–tilting module.

Note that δS is a generator for the class of all S–divisible modules: indeed,
if M is S–divisible and a ∈ M , then there is a homomorphism η : δS → M
such that a ∈ Im(η). The homomorphism η is constructed by induction: first
we define η on δ0

∼= R, so that its image contains a. If η is already defined on
δi for some i < ω, we use the fact that δi+1/δi is isomorphic to the direct sum
of copies of R/sR with s ∈ S to infer that Ext1R(δi+1/δi,M) = 0, and to extend
η from δi to δi+1.

The module δ = δR\{0} was introduced by Fuchs. Facchini [41] proved that
δ is a 1-tilting module. The general case of δS comes from [43], so we will call δS

the Fuchs tilting module. Notice that the 1–tilting class induced by δS coincides
with the class of all S–divisible modules.

If R is a Prüfer domain, then any module of projective dimension ≤ 1 is
filtered by finitely presented cyclic modules and Ext1R(R/I,D) = 0 for any
finitely generated ideal I and any D ∈ DI (see [44, §I.7 and §VI.6]). If R is
a Matlis domain, then DI = Gen(Q), and P1 = ⊥ Gen(Q), [44, §VIII]. So in
either case, the 1–tilting cotorsion pair induced by δ is (P1,DI).
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Example 3.3. Let R be a commutative 1–Iwanaga–Gorenstein ring (that is,
a commutative noetherian ring with inj dimR ≤ 1, see Example 2.14). Let P0

and P1 denote the sets of all prime ideals of height 0 and 1, respectively. By a
classical result of Bass [64, §18], the minimal injective coresolution of R has the
form

0 → R →
⊕

q∈P0

E(R/q)
π
→

⊕

p∈P1

E(R/p) → 0.

Consider a subset P ⊆ P1. Put RP = π−1(
⊕

p∈P E(R/p)) and TP = RP ⊕⊕
p∈P E(R/p). We will show that TP is a 1-tilting module (it is called the Bass

tilting module).
First we have RP /R ∼=

⊕
p∈P E(R/p) and Q/RP

∼=
⊕

p∈P1\P E(R/p). Since

both RP and RP /R have injective (equivalently, projective) dimension ≤ 1, so
does TP . As HomR(E(R/p), Q/RP ) = 0, we see that Ext1R(E(R/p), RP ) = 0

for all p ∈ P . It follows that Ext1R(TP , T
(κ)
P ) = 0 for each cardinal κ. Finally,

the exact sequence 0 → R −→ RP −→
⊕

p∈P E(R/p) → 0 yields condition (T3)
for TP .

Notice that the 1–tilting class induced by TP is {M | Ext1R(E(R/p),M) =
0 for all p ∈ P}. This class equals {M | Ext1R(R/p,M) = 0 for all p ∈ P} in
case R is hereditary (in particular, when R is a Dedekind domain).

Example 3.4. Let R be a connected tame hereditary algebra over a field k. Let
G denote the generic module. Then S = End(G) is a skew–field and dimS Q =
n < ω. Denote by T the set of all tubes. If α ∈ T is a homogeneous tube, we
denote by Rα the corresponding Prüfer module. If α ∈ T is not homogenous,
denote by Rα the direct sum of all Prüfer modules corresponding to the rays in
α. There is an exact sequence

0 → R → Q(n) π
→

⊕

α∈T

R(λα)
α → 0,

where λα > 0 for all α ∈ T .
Let P ⊆ T . Put RP = π−1(

⊕
α∈P R

(λα)
α ). Similarly, as in Example 3.3,

we see that TP = RP ⊕
⊕

α∈P Rα is a 1-tilting module, called the Ringel tilt-

ing module. Notice that the 1–tilting class induced by TP equals T⊥
P = {M ∈

Mod-R | Ext1R(N,M) = 0 for all (simple) regular modules N ∈ P}. In particu-
lar, if P 6= P ′ ⊆ T , then the tilting modules TP and TP ′ are not equivalent.

The modules in the tilting class R = T⊥
T = {D ∈ Mod-R | Ext1R(M,D) =

0 for all (simple) regular modules M} are called Ringel divisible (see [34]).

Example 3.5. The following examples go back to [57] (and originate in the
work of Lukas [61]).

(a) Let R be a connected wild hereditary algebra over a field k. Denote by
τ the Auslander–Reiten translation, and by R the class of all Ringel divisible
modules (they are defined as in the tame case, by Ext1R(M,D) = 0 for each
regular module M).

Let M,N ∈ mod–R. Assume M is regular. By [61], there is an exact
sequence 0 → N → AM → BM → 0, where AM ∈ M⊥ and BM is a finite direct
sum of copies of τnM for some n < ω.
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Let X be any regular module and TX = {τmX | m < ω}. Iterating the
construction above (for M = X and N = R, M = τX and N = AX , etc.),
we obtain an exact sequence 0 → R → CX → DX → 0, where DX has a
countable TX–filtration. Then TX = CX ⊕DX is a 1–tilting module, called the
Lukas divisible module. The corresponding 1–tilting class is R (so in contrast
to Example 3.4, TX and TX′ are equivalent for all regular modules X and X ′).

(b) Let R be a connected hereditary algebra of infinite representation type
over a field k. Let P 6= 0 be any preprojective module. Then there is a chain
of preprojective modules An (n < ω) with the following properties: A0 = R,
and for each n < ω there is an exact sequence 0 → An ⊆ An+1 → Pn → 0,
where An+1 and Pn are preprojective and HomR(An+1, τ

−nP ) = 0. Put AP =⋃
n<ω An, BP = AP /A, and TP = AP ⊕BP . Then TP is a tilting module (called

the Lukas tilting module).
TP induces the tilting class T⊥

P = L = {M ∈ Mod-R | Ext1R(Q,M) = 0 for
all preprojective modules Q ∈ mod–R} (L is called the class of all P∞-torsion
modules). Again, this class does not depend on the choice of P , that is, all the
Lukas tilting modules TP are equivalent.

If R is tame, then the tilting cotorsion pair induced by TP is (B,L) where
B = ⊥ Gen(t), and t ⊆ mod–R is the class of all regular modules. The modules
B ∈ B are called Baer modules; for their structure, we refer to [9].

Now we consider an example of an infinitely generated n–tilting module:

Example 3.6. Let n ≥ 0 and R be an n–Iwanaga–Gorenstein ring (see Example
2.14). Let 0 → R → I0 → . . . → In → 0 be the minimal injective coresolution
of R.

Then T =
⊕

i≤n Ii is easily seen to be an n–tilting module: indeed, since
T is injective, T has projective dimension ≤ n, so condition (T1) of Definition
3.1 is satisfied. Since R is noetherian, T (κ) is also injective, so (T2) holds. The
minimal injective coresolution above yields condition (T3). (This tilting module
will play a crucial role in proving the first Bass’ finitistic dimension conjecture
for R in Chapter 5.)

Theorem 3.25 below will provide a characterization of all n–tilting classes.
For its proof, we will need a number of basic facts on tilting modules and tilting
cotorsion pairs. We start with a definition:

Definition 3.7. Let R be a ring, C be a class of modules, and M ∈ Mod–R.

(i) M is called C–resolved, if there is a C–resolution of M , that is a long exact
sequence . . . → Cn → . . . → C0 → M → 0 such that Cn ∈ C for all n < ω.

Assume M is C–resolved. If M has a C–resolution such that Ci = 0 for all
i ≥ n+1, then the least such n (among all such C–resolutions) is called the
C–resolution dimension of M . Otherwise M is said to have C–resolution
dimension ∞.

(ii) Dually, M is called C–coresolved, if there is a C–coresolution of M , that is
a long exact sequence 0 → M → C0 → . . . → Cn → . . . such that Cn ∈ C
for all n ≤ ω.

Assume M is C-coresolved. If M has a C–coresolution such that Ci = 0
for all i ≥ n + 1, then the least such n (among all such C–coresolutions) is
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called the C–coresolution dimension of M . Otherwise M is said to have
C–coresolution dimension ∞.

Clearly any module is P0–resolved, and the P0–resolution dimension is ex-
actly the projective dimension. Similarly, any module is I0–coresolved; the
I0–coresolution dimension is exactly the injective dimension.

Now we continue with several basic properties of tilting cotorsion pairs:

Lemma 3.8. Let R be a ring and T be an n–tilting module. Denote by T =
(A,B) the n–tilting cotorsion pair induced by T .

(a) Let 0 → Pn → . . . → P0 → T → 0 be a projective resolution of T with the
syzygy modules S0 = T, . . . , Sn = Pn. Let S =

⊕
i≤n Si. Then T is the

cotorsion pair generated by S. In particular, T is complete.

(b) A ⊆ Pn and B ⊆ Gen(T ).

Each of the short exact sequences forming the long exact sequence in (T3)
is given by a special B-preenvelope of an element of A. The length r in
(T3) can be taken ≤ n.

(c) The kernel of T equals Add(T ).

(d) Each M ∈ B ∩ Pn has Add(T )–resolution dimension ≤ n.

Proof. (a) This follows by Theorem 1.40 (b).
(b) By assumption, S ∈ Pn, so A ⊆ Pn by Theorem 2.12.

Let M ∈ B. Consider the long exact sequence from (T3):

0 → R
ϕ

−−−−→ T0
ϕ0

−−−−→ T1
ϕ1

−−−−→ . . .
ϕr−1

−−−−→ Tr
ϕr

−−−−→ 0.

Since Ti ∈ A for all i ≤ r, and A is resolving by Lemma 1.20, we have Ki =
Ker(ϕi) ∈ A. In particular, Ki ∈ Pn. Let f : R(λ) → M be an epimorphism

and put g = ϕ(λ). Consider the exact sequence 0 → R(λ) g
−→ T

(λ)
0 −→ K

(λ)
1 → 0,

and form the pushout of f and g:

0 −−−−→ R(λ) g
−−−−→ T

(λ)
0 −−−−→ K

(λ)
1 −−−−→ 0

f

y h

y
∥∥∥

0 −−−−→ M −−−−→ G −−−−→ K
(λ)
1 −−−−→ 0

y
y

0 0.

Since M ∈ B, the second row splits, so M is a direct summand in G. Since
h is surjective, G ∈ Gen(T0) ⊆ Gen(T ), and M ∈ Gen(T ). This proves that
B ⊆ Gen(T ).

By (T2), Ti ∈ Add(T ) ⊆ B for all i ≤ r. So the embedding Ki →֒ Ti is
a special B-preenvelope of Ki ∈ A, and proj dimKi ≤ n, for each i ≤ r. If
n < r, then the short exact sequence 0 → Kn −→ Tn −→ Kn+1 → 0 splits, since
Ext1R(Kn+1,Kn) ∼= · · · ∼= Extn

R(Kn+1,K1) ∼= Extn+1
R (Kn+1,K0) = 0. So we can

assume r ≤ n in (T3).
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(c) By (T2), Add(T ) ⊆ A ∩ B.
Conversely, let M ∈ A ∩ B. By part (b), M ∈ Gen(T ). So the canonical map
ϕ ∈ HomR(T (HomR(T,M)),M) is surjective, and there is a short exact sequence

0 → L −→ T (HomR(T,M)) ϕ
−→ M → 0. (3.2)

Applying HomR(T,−) to (3.2), we obtain the long exact sequence

0 → HomR(T,L) → HomR(T, T (HomR(T,M)))
HomR(T,ϕ)

→ HomR(T,M) →

Ext1R(T,L) → Ext1R(T, T (HomR(T,M))) → Ext1R(T,M) → . . .

Exti
R(T,L) → Exti

R(T, T (HomR(T,M))) → Exti
R(T,M) → . . . .

By definition, HomR(T, ϕ) is surjective, so Ext1R(T,L) = 0 by (T2). We also
have Exti

R(T,M) = 0 for all 0 < i < ω, so condition (T2) implies that L ∈
T⊥∞ = B. Since M ∈ A, (3.2) splits, and M ∈ Add(T ).

(d) Let M ∈ B ∩ Pn. An iteration of special A-precovers (of M etc.) gives
rise to a long exact sequence

0 → Kn → En
ψn

−−−−→ En−1
ψn−1

−−−−→ . . .
ψ1

−−−−→ E0
ψ0

−−−−→ M → 0,

where Ei ∈ Add(T ), Ki = Kerψi ∈ B and ψi induces a special A-precover of
its image for all i ≤ n. By assumption, M ∈ Pn, so Ext1R(Kn−1,Kn) ∼= · · · ∼=
Extn

R(K0,Kn) ∼= Extn+1
R (M,Kn) = 0. It follows that Kn−1 ∈ Add(T ), so we

can take En = Kn−1 and Kn = 0.

If T is a tilting module, then its projective dimension is the maximum of
projective dimensions of the modules in A = ⊥(T⊥∞). In particular, by Lemma
3.8 (b), equivalent tilting modules have equal projective dimensions.

By Lemma 3.8 (c), the kernel of T equals Add(T ). So the classes A and B
can be recovered from the kernel simply using the equalities B = (Add(T ))⊥

and A = ⊥B.
There is another way of recovering A and B from the kernel, via Add(T )–

resolutions and Add(T )–coresolutions in the sense of Definition 3.7:

Proposition 3.9. Let R be a ring, T be an n–tilting module, and (A,B) the
n–tilting cotorsion pair induced by T .

(a) A coincides with the class of all Add(T )–coresolved modules of Add(T )–
coresolution dimension ≤ n.

(b) B coincides with the class of all Add(T )–resolved modules. In particular,
B is closed under direct sums.

Proof. (a) Since A is resolving, M ∈ A for any module M of finite Add(T )–
resolution dimension.

Conversely, let A ∈ A. An iteration of special B–preenvelopes (of A etc.)
yields a long exact sequence

0 → A → E0
ψ0

−−−−→ E1
ψ1

−−−−→ . . .
ψn−1

−−−−→ En
ψn

−−−−→ Kn+1 → 0,

where Ei ∈ Add(T ) for all i ≤ n and Kn+1 ∈ A. Let Ki = Kerψi (i ≤ n). By
Lemma 3.8 (b), Kn+1 ∈ Pn, so Ext1R(Kn+1,Kn) ∼= · · · ∼= Extn

R(Kn+1,K1) ∼=
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Extn+1
R (Kn+1, A) = 0. It follows that Kn+1 ∈ Add(T ), so we can take En = Kn

and Kn+1 = 0.
(b) If M ∈ B, then an Add(T )–resolution is obtained by an iteration of

special A-precovers (of M etc.).
Conversely, assume there exists an Add(T )–resolution B

. . . → En → . . . → E0 → B → 0.

Denote by K0 the kernel of the epimorphism E0 → B, by K1 the kernel of the
epimorphism E1 → K0, etc. Let A ∈ A. Then Ext1R(A,B) ∼= Ext2R(A,K0) ∼=
· · · ∼= Extn+1

R (A,Kn−1) = 0 by Lemma 3.8 (b), so B ∈ B.

Indeed, we can do slightly better:

Corollary 3.10. Let R be a ring, T be an n–tilting module, and (A,B) the
n–tilting cotorsion pair induced by T .

(a) A coincides with the class of all modules A possessing an exact sequence

0 → A → T (κ0) → . . . → T (κn) → 0

where κi is a cardinal for each i ≤ n.

(b) B coincides with the class, Genn(T ), consisting of all modules B possessing
an exact sequence

T (λn) → . . . → T (λ1) → B → 0,

where λi is a cardinal for each 1 ≤ i ≤ n.

Proof. (a) This follows by possibly adding elements of Add(T ) to the middle
terms of the short exact sequence forming the Add(T )–coresolution character-
izing A ∈ A in Proposition 3.9 (a).

(b) As in part (a), we infer from Proposition 3.9 (b) that B ∈ B, iff B
possesses a long exact sequence

. . . → T (λi) → . . . → T (λ1) → B → 0,

where λi is a cardinal for each 1 ≤ i < ω. So clearly, B ⊆ Genn(T ).
Conversely, if B ∈ Genn(T ) possesses a sequence

T (λn) fn
→ . . .

f2
→ T (λ1) f1

→ B → 0,

then Exti
R(T,B) ∼= Exti+1

R (T,Ker(f1)) ∼= · · · ∼= Exti+n
R (T,Ker(fn)) = 0 for each

i ≥ 1 since proj dim T ≤ n. So B ∈ T⊥∞ = B.

By Corollary 3.10 (b), any tilting module of projective dimension n satisfies
T⊥∞ = Genn(T ). Also the converse holds, so T is an n–tilting module, if and
only if T⊥∞ = Genn(T ) (see [18]).

The classes X⊥∞ and Genn(X) are well–defined for any object X of a co-
complete abelian category X . So the condition X⊥∞ = Genn(X) is a suitable
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defining condition for an (infinite–dimensional) tilting object X of X that avoids
the problem of the possible non–existence of projective objects in X .

The equivalence of tilting modules defined above can be expressed in a sim-
pler way:

Lemma 3.11. Let R be a ring and T1, T2 be tilting modules. Then T1 is
equivalent to T2, iff Add(T1) = Add(T2), iff Add(T1) ⊆ Add(T2).

Proof. If T⊥∞

1 = T⊥∞

2 , then also ⊥(T⊥∞

1 ) = ⊥(T⊥∞

2 ), and hence Add(T1) =
Add(T2) by Lemma 3.8 (c).

Assume T1 ∈ Add(T2). Then BT2
= T⊥∞

2 ⊆ T⊥∞

1 = BT1
. However, BT1

⊆
BT2

by Proposition 3.9 (b), so T1 and T2 are equivalent.

The following result, due to Angeleri Hügel and Coelho [3], gives a charac-
terization of tilting classes of modules:

Theorem 3.12. Let R be a ring, n < ω, and C be a class of modules. Then the
following assertions are equivalent:

(a) C is n–tilting.

(b) C is coresolving, special preenveloping, closed under direct sums and direct
summands, and ⊥C ⊆ Pn.

Proof. (a) implies (b): this follows from parts (a) and (b) of Lemma 3.8,
and from Proposition 3.9 (b).

(b) implies (a): first the special C–preenvelope of any injective module splits.
Since C is closed under direct summands and it is coresolving, we have I0 ⊆ C
and C is cosyzygy closed. So ⊥∞C = ⊥C by Lemma 1.21.

The special C-preenvelope of R gives rise to a short exact sequence 0 →
K0 −→ T0 −→ K1 → 0, where K0 = R, T0 ∈ C and K1 ∈ ⊥C ⊆ Pn. Since
R ∈ ⊥C, we have T0 ∈ C ∩ ⊥C. By induction we obtain short exact sequences
0 → Ki −→ Ti −→ Ki+1 → 0 with Ti ∈ C ∩ ⊥C and Ki+1 ∈ ⊥C ⊆ Pn. Since
Kn+1 ∈ Pn, the sequence 0 → Kn −→ Tn −→ Kn+1 → 0 splits by dimension
shifting. So we can assume that Kn+1 = 0, and form the long exact sequence
(with Ti ∈ C ∩ ⊥C for all i ≤ n)

0 → R
ϕ0
→ T0

ϕ1
→ T1

ϕ2
→ . . .

ϕn−1
→ Tn−1

ϕn
→ Tn → 0. (3.3)

Put T =
⊕

i≤n Ti. We will prove that T is n–tilting. First T ∈ C ∩⊥C ⊆ Pn, so

(T1) holds. Since C is closed under direct sums, T (κ) ∈ C for each cardinal κ,
and (T2) holds. The long exact sequence above gives (T3).

Finally, we will prove that T⊥∞ = C. Since T ∈ ⊥C, clearly T⊥∞ ⊇ C.
Conversely, let C ∈ T⊥∞ . Consider a special C–preenvelope ψ0 of C, a special
C–preenvelope ψ1 of Coker ϕ0 etc. Since Coker ψn+1 ∈ Pn, dimension shifting
shows that ψn+1 splits. So there is a long exact sequence

0 → C
ψ0
→ D0

ψ1
→ D1

ψ2
→ . . .

ψn−1
→ Dn−1

ψn
→ Dn → 0

with Di ∈ C ⊆ T⊥∞ for all i < n, and Dn ∈ C ∩ ⊥C. Since C ∈ T⊥∞ and T⊥∞

is coresolving, we get Coker ψi ∈ T⊥∞ for all i ≤ n. It remains to prove that
C ∩ ⊥C ⊆ ⊥(T⊥∞) — then ψn splits and, by induction, ψ0 splits, so C ∈ C.
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Let M ∈ C ∩ ⊥C (⊆ T⊥∞ ∩ Pn). By Lemma 3.8 (d), there is a long exact
sequence

0 → En → . . . → E0
η0
→ M → 0,

where Ei ∈ Add(T ) for all i ≤ n. By the closure properties of C, Add(T ) ⊆
C ∩ ⊥C, and Ker η0 ∈ C. So η0 splits, and M ∈ Add(T ) ⊆ ⊥(T⊥∞).

Note that the proof of (b) implies (a) above is constructive: the tilting
module T is obtained as T =

⊕
i≤n Ti where Ti form the long exact sequence

(3.3) obtained by an iteration of special C–preenvelopes, starting from a special
C–preenvelope of R, ϕ0 : R → T0, over a special C–preenvelope of the cokernel
of ϕ0, etc.

Now we can characterize tilting cotorsion pairs by the closure properties of
their components:

Corollary 3.13. Let n < ω. Let R be a ring and C = (A,B) be a cotorsion
pair. Then the following assertions are equivalent:

(a) C is an n–tilting cotorsion pair.

(b) C is a hereditary (and complete) cotorsion pair such that A ⊆ Pn and B
is closed under direct sums.

Proof. (a) implies (b). By Theorem 3.12 for C = B.
(b) implies (a). In view of Theorem 3.12, it only remains to prove that

completeness of C follows from the other assumptions on C. However, this has
already been proved in Corollary 2.34.

Our Definition 3.1 of a tilting module admits infinitely generated modules.
Indeed, many of the examples of tilting modules presented in this book are far
from being finitely generated. There is, however, an implicit finiteness condition
hidden in the notion of a tilting module: every tilting module T is of finite type.
This says that though T is large, when computing the corresponding tilting class
T⊥∞ , we can replace T by a set S ⊆ mod–R such that T⊥∞ = S⊥∞ .

In particular, T⊥∞ is a definable class of modules, that is, it is closed under
direct limits, products, and pure submodules. Another consequence is that
tilting modules are classified up to equivalence by the resolving subcategories of
finitely presented modules of bounded projective dimension.

Now, we aim at proving these results in several steps following the recent
papers [4], [21], [23], [26] and [71]. We will concentrate on the key ideas of the
proofs rather than technicalities, so not all steps will be proved in full generality.
We refer to [46] for a complete presentation.

We start with the notions of a module, and a class of finite type:

Definition 3.14. Let R be a ring.
Let C be a class of modules. Then C is of finite type (countable type) provided
there exist n < ω and S ⊆ P<ω

n (S ⊆ P≤ω
n ) such that C = S⊥∞ .

Let T be a module. The T is of finite type (of countable type) provided the class
T⊥∞ is of finite type (countable type).

64



Let C be a class of finite (countable) type and A = ⊥C (= ⊥∞C). Then (A, C)
is a hereditary cotorsion pair generated by the class A<ω (A≤ω), so S = A<ω

(S = A≤ω) is the largest possible choice for S in Definition 3.14.

Any class of finite type is a tilting class, so there is a rich supply of tilting
classes and modules available:

Theorem 3.15. Let R be a ring and C be a class of finite type. Then C is
tilting and definable.

Proof. By assumption, there are n < ω and S ⊆ P<ω
n such that C = S⊥∞ .

Clearly C is closed under direct products. By Lemma 1.34, C is also closed
under direct limits. Since F⊥ is closed under pure submodules for any finitely
presented module F , C is closed under pure submodules. So C is a definable
class.

Let C = (A, C) be the cotorsion pair cogenerated by C. By Theorem 1.40,
C is complete. By Theorem 2.12, A ⊆ Pn. By Corollary 3.13, C is an n–tilting
cotorsion pair, that is, C is an n–tilting class.

The converse of Theorem 3.15 also holds: all tilting classes and modules are
of finite type. This is proved in three steps.

The first step shows that all tilting classes are of countable type:

Theorem 3.16. Let R be a ring, T be a tilting module, and (A,B) the cotorsion
pair induced by T . Then T and B are of countable type. Moreover, each module
A ∈ A is A≤ω–filtered.

Proof. First, assume that R is an ℵ0–noetherian ring. We have A ⊆ Pn by
Lemma 3.8 (b). So the assertion in this case is a particular instance of Theorem
2.33 for µ = ℵ0.

For the general case, we refer to [71] or [46].

In order to proceed from the countable type to the finite one, we will first
prove the definability of tilting classes. For that purpose, we will need a couple
of results concerning countably presented modules and their Ext–orthogonal
classes.

We start by recalling the canonical presentation of countably presented mod-
ules going back to Bass:

Let A ∈ Mod–R be countably presented. Then there exist finitely presented
modules (Ai | i < ω), and R–homomorphisms hi : Ai → Ai+1 such that A is
the direct limit of the well–ordered direct system

A0
h0→ A1

h1→ . . .
hi−1
→ Ai

hi→ Ai+1
hi+1
→ . . .

and the following sequence is pure–exact

0 →
⊕

i<ω

Ai
ψ
−→

⊕

i<ω

Ai −→ A → 0, (3.4)

where ψ is defined by ψǫi = ǫi − ǫi+1hi, and ǫi : Ai →
⊕

i<ω Ai is the i–th
canonical monomorphism for each i < ω.
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Let B be a module. For each i < ω, denote by ξi : B(ω) → B the i–th
canonical projection. For each homomorphism β ∈ HomR(

⊕
i<ω Ai, B

(ω)), we
define βji = ξjβǫi for all i, j < ω.

An R–homomorphism γ :
⊕

i<ω Ai → B(ω) is called diagonal, provided that
γij = 0 for all i 6= j < ω.

We will say that ψ has B–factorization property, provided that each diagonal
map γ ∈ HomR(

⊕
i<ω Ai, B

(ω)) has a factorization through ψ, that is, there

exists φ ∈ HomR(
⊕

i<ω Ai, B
(ω)) such that γ = φψ.

We will prove that the B–factorization property is closely related to the
Mittag–Leffler condition defined below. For that purpose, we introduce further
convenient notation: an exact sequence of modules of the form

G : . . .
gi+1
→ Gi+1

gi
→ Gi

gi−1
→ . . .

g1
→ G1

g0
→ G0

is called a tower of modules. Putting gij = gi . . . gj for all i < j and gii = idGi
,

we obtain an inverse system of modules induced by the tower G, and denoted
by G′ = (Gi, gij | i < j < ω).

We will say that the inverse system G′ (or the tower G) satisfies the Mittag–
Leffler condition, provided that for each k < ω there exists j ≥ k such that
Im(gki) = Im(gkj) for all j ≤ i < ω, that is, the descending chain of the images
of the groups Gi+1 in Gk is stationary.

Define a map ∇G :
∏

i<ω Gi →
∏

i<ω Gi by the assignment

(. . . , ai, . . . , a0) 7→ (. . . , ai − gi(ai+1), . . . , a0 − g0(a1)).

Then clearly Ker(∇G) = lim
←−i<ω

Gi is the inverse limit of the inverse system G′.

If 0 → G′ −→ H′ −→ K′ → 0 is a short exact sequence of inverse systems
induced by towers of modules, then the Snake Lemma from classical homological
algebra (see e.g. [40, §1.2]) yields the exact sequence

0 → lim
←−
i<ω

Gi → lim
←−
i<ω

Hi → lim
←−
i<ω

Ki

→ Coker(∇G) → Coker(∇H) → Coker(∇K) → 0. (3.5)

In particular, if Coker(∇G) = 0, then lim
←−

preserves the exactness of all short
exact sequence of inverse systems induced by towers of modules which start from
G′. The Mittag–Leffler condition is a sufficient condition for this to happen:

Lemma 3.17. Assume that G satisfies the Mittag–Leffler condition.
Then Coker(∇G) = 0.

Proof. First assume that for each k < ω there is j > k such that gkj = 0.
Consider a sequence x̄ = (xk | k < ω) ∈

∏
k<ω Gk. Let ȳ = (yk | k < ω), where

yk = xk + ck+1 + · · ·+ cj−1 and ci = gki(xi) for j > i > k. Then ∇G(ȳ) = x̄, so
∇G is surjective, and Coker(∇G) = 0.

In the general case, let Ik ⊆ Gk be the (stabilized) image of gki : Gi+1 → Gk

in Gk (for k < j ≤ i). Consider the tower

I : . . .
gi+1
→ Ii+1

gi
→ . . .

g1
→ I1

g0
→ I0.

Since all the maps gi : Ii+1 → Ii are surjective, ∇I is easily seen to be
surjective, so Coker(∇I) = 0.
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Now the tower

J : . . .
¯gi+1
→ Gi+1/Ii+1

ḡi
→ . . .

ḡ1
→ G1/I1

ḡ0
→ G0/I0

has the property that for each i < ω there is j > i such that ḡij = 0. By the
first part of the proof, ∇J is surjective, and Coker(∇J ) = 0.

Finally, (3.5) yields the exact sequence

0 = Coker(∇I) → Coker(∇G) → Coker(∇J ) = 0

proving that Coker(∇G) = 0.

In fact, if G is a tower of modules, then besides the obvious equality lim
←−

G =

Ker(∇G), also lim
←−

1 G = Coker(∇G) and lim
←−

i G = 0 for i > 1, and (3.5) is just
the long exact sequence for the derived functors of the left–exact functor lim

←−
(for more details, we refer to [78, §3.5]).

Notice that, if A is a countably presented module with the presentation (3.4),
and B is any module, then the inverse system induced by the tower of abelian
groups

. . .
HomR(hi+1,B)

→ HomR(Ai+1, B)
HomR(hi,B)

→ . . .
HomR(h0,B)

→ HomR(A0, B)

satisfies the Mittag–Leffler condition, if and only if, for each i < ω, the chain of
subgroups of HomR(Ai, B)

HomR(Ai+1, B)hi ⊇ · · · ⊇ HomR(Ai+j , B)hi+j−1 . . . hi ⊇ · · ·

is stationary.
First we will need the following necessary condition for a diagonal map to

factorize through ψ:

Lemma 3.18. Let R be a ring, A a countably presented module with the pre-
sentation (3.4), and B be a module. Assume that γ ∈ HomR(

⊕
i<ω Ai, B

(ω))
is a diagonal map which has a factorization, φ, through ψ. Then there exists
a sequence of natural numbers (l(m) | m < ω) such that, for each m < ω,
l(m) > m, and γkkhk−1hk−2 . . . hm = −φk,k+1hkhk−1 . . . hm for all k ≥ l(m).

Proof. Fix m ≥ 0. For each j < ω, we have φij = 0 and ψij = 0 for almost
all i < ω, since Aj is finitely generated. Let l(m) > m be the least index such
that φkm = 0 for all k ≥ l(m).

Since γ is diagonal and γ = φψ,
∑

k<ω φikψkj = 0 for i 6= j < ω, and∑
k<ω φikψki = γii for each i < ω. The former equation yields, for k > m, that

φkj = φk,j+1hj for each m ≤ j < k, hence φkm = φkkhk−1hk−2 . . . hm. The
latter equation gives φkk = φk,k+1hk + γkk. Altogether, we have

−φk,k+1hkhk−1 . . . hm = γkkhk−1hk−2 . . . hm

for each k ≥ l(m).

The following lemma relates the B–factorization property to the Mittag–
Leffler condition:
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Lemma 3.19. Let R be a ring, and A be a countably presented module with the
presentation (3.4). Let B be a module such that ψ has B–factorization property.
Then for each i < ω, the chain of subgroups of HomR(Ai, B)

HomR(Ai+1, B)hi ⊇ · · · ⊇ HomR(Ai+j , B)hi+j−1 . . . hi ⊇ · · · (3.6)

is stationary.

Proof. Assume there is i < ω such that the chain (3.6) is not station-
ary. So there is an infinite set S ⊆ ω such that for each j ∈ S there is
fj ∈ HomR(Ai+j , B) with fjhi+j−1 . . . hi /∈ HomR(Ai+j+1, B)hi+j . . . hi. Define
a diagonal morphism γ :

⊕
j<ω Aj → B(ω) by γi+j,i+j = fj . By assumption,

γ has a factorization, φ, through ψ. By Lemma 3.18, this implies that for all
k ≥ l(i),

γkkhk−1hk−2 . . . hi = −φk,k+1hkhk−1 . . . hi.

For j ∈ S with k = i + j ≥ l(i), we have φk,k+1 ∈ HomR(Ai+j+1, B), in
contradiction with the choice of fj .

Also the converse of Lemma 3.19 holds: if the chain (3.6) is stationary for
all i < ω, then ψ has B–factorization property (for a proof, we refer to [23, §3]).

An important property of the Mittag–Leffler condition is that it behaves well
with respect to pure submodules:

Lemma 3.20. Let R be a ring, and A be a countably presented module with the
presentation (3.4). Let B′ be a pure submodule of a module B. Assume that
the system of abelian groups induced by the tower (HomR(Ai, B),HomR(hi, B) |
i < ω) satisfies the Mittag–Leffler condition. Then so does the inverse system
induced by the tower (HomR(Ai, B

′),HomR(hi, B
′) | i < ω).

Proof. We have to prove that the chain of subgroups of HomR(Ai, B
′)

HomR(Ai+1, B
′)hi ⊇ · · · ⊇ HomR(Ai+j , B

′)hi+j−1 . . . hi ⊇ · · ·

is stationary. Since the analogous chain with B′ replaced by B is stationary by
assumption, it suffices to prove that

ν HomR(Ai+j , B
′)f = HomR(Ai+j , B)f ∩ ν HomR(Ai, B

′),

where ν : B′ →֒ B is the inclusion map and f = hi+j−1 . . . hi. The in-
clusion ⊆ is clear, so it is enough to prove that given any homomorphisms
x ∈ HomR(Ai+j , B) and y ∈ HomR(Ai, B

′) satisfying xf = νy, there exists
z ∈ HomR(Ai+j , B

′) such that y = zf .

Consider a presentation 0 → K
⊆
−→ Rp ρ

−→ Ai+j → 0 with K finitely gen-
erated and p < ω. Let (1m | m < p) be the canonical basis of Rp, and kn =∑

m<p 1mrnm (n < q) be an R–generating subset of K. Let dl =
∑

m<p 1mslm

(l < t) be a finite set of elements of Rp such that ρ(dl) = f(al), where {al | l < t}
is a finite R–generating subset of Ai.

The existence of the map x implies solvability in B of the following system
of R–linear equations in variables xm (m < p):

∑

m<p

xmrnm = 0 (n < q), (3.7)
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∑

m<p

xmslm = y(al) (l < t). (3.8)

Since B′ is pure in B, there is a solution, (b0, . . . , bp−1) of this system in B′.
Define a map w : Rp → B′ by w(1m) = bm (m < p). Then w ↾ K = 0 by (3.7),
so w induces z ∈ HomR(Ai+j , B

′) such that w = zρ. Finally, y = zf by (3.8).

Now we can prove

Theorem 3.21. Let R be a ring, A a countably presented module, and B = A⊥.
Assume that B(ω) ∈ B for each B ∈ B. Then B is closed under pure submodules.

Proof. Consider the presentation of A from (3.4). Let B ∈ B and B′ be a
pure submodule of B. By assumption, Ext1R(A,B(ω)) = 0, so ψ clearly has B–
factorization property. By Lemmas 3.19 and 3.20, this implies that the inverse
system induced by the tower (HomR(Ai, B

′),HomR(hi, B
′) | i < ω) is Mittag–

Leffler.
Consider the pure–exact sequence

X : 0 → B′ −→ B
ρ
−→ B/B′ → 0.

Since all modules Ai (i < ω) are finitely presented, an application of HomR(Ai,−)
(i < ω) to X yields an inverse system of short exact sequences

0 → HomR(Ai, B
′) −→ HomR(Ai, B) −→ HomR(Ai, B/B′) → 0 (i < ω).

However, (HomR(Ai, B
′),HomR(hi, B

′) | i < ω) satisfies the Mittag–Leffler
condition, so Lemma 3.17 gives exactness of the sequence

0 → lim
←−
i<ω

HomR(Ai, B
′) −→ lim

←−
i<ω

HomR(Ai, B) −→ lim
←−
i<ω

HomR(Ai, B/B′) → 0

and hence of

0 → HomR(A,B′) −→ HomR(A,B)
HomR(A,ρ)
−−−−−−−→ HomR(A,B/B′) → 0.

In particular, HomR(A, ρ) is surjective, and Ext1R(A,B) = 0 by assumption, so
we conclude that Ext1R(A,B′) = 0.

As an immediate corollary, we obtain:

Corollary 3.22. Let R be a ring, T be a tilting module, and (A,B) be the
cotorsion pair induced by T . Then B is definable.

Proof. Clearly B is coresolving, and closed under direct products. By
Proposition 3.9 (b), B is closed under direct sums. Since the canonical map
of a direct sum onto a direct limit is a pure–epimorphism, it suffices to prove
that B is closed under pure submodules.

However, B is of countable type by Theorem 3.16, so the closure of B under
pure submodules follows by Theorem 3.21.

In order to refine Theorem 3.16 further to finite type, we will use the following
criterion:
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Lemma 3.23. Let R be a ring and T be a tilting module. Let (A,B) be the
tilting cotorsion pair induced by T . Then T is of finite type, iff A≤ω ⊆ lim

−→
A<ω.

Proof. If T is of finite type, then B = (A<ω)⊥ by 3.14, so A ⊆ lim
−→

A<ω by
Theorem 2.61.

Conversely, let T = (A<ω)⊥. Then B ⊆ T , and both B and T are definable
(by Corollary 3.22 and Theorem 3.15, respectively). By Lemma 1.38, a module
belongs to a definable class, iff its pure–injective envelope does. So it remains
to show that B and T contain the same pure–injective modules.

Let M ∈ T be pure–injective and let A ∈ A. By Theorem 3.16, A is
A≤ω-filtered. By assumption, A≤ω ⊆ lim

−→
A<ω. Since lim

−→
A<ω is closed under

extensions and direct limits by Theorem 2.61, by induction on the length of a
A≤ω-filtration of A, we infer that A ∈ lim

−→
A<ω.

So there is a direct system (Ai, fji | i ≤ j ∈ I) of modules in A<ω such

that A = lim
−→i∈I

Ai, and Extj
R(Ai,M) = 0 for all i ∈ I and j > 0. Since M is

pure–injective, Lemma 1.35 gives Extj
R(A,M) ∼= lim

←−i∈I
Extj

R(Ai,M) = 0 for all

j > 0, hence M ∈ B.
This proves that T contains the same pure–injective modules as B.

Already at this point, Lemmas 2.63 and 3.23 yield that each 1–tilting module
is of finite type. In order to extend this fact by induction to n–tilting modules,
we need one more lemma:

Lemma 3.24. Let R be a ring, n > 0, and T be a tilting module of projective
dimension n. Let C = (A′,B′) be the cotorsion pair defined by B′ = (Ω(T ))⊥∞ ,
where Ω(T ) is the first syzygy module of T . Then C is a tilting cotorsion pair
induced by an (n − 1)–tilting module T ′.

Proof. Since Ω(T ) has projective dimension n − 1, by Corollary 3.13, it
suffices to prove that the class B′ is closed under direct sums.

For this purpose, it suffices to show that B′ coincides with the class of all
modules M such that there is an exact sequence 0 → M −→ B −→ C → 0, where
B ∈ T⊥∞ and C ∈ Add(T ).

The existence of the exact sequence gives Exti
R(Ω(T ),M) ∼= Exti+1

R (T,M) =
0 for each i > 0, because 0 = Exti

R(T,C) → Exti+1
R (T,M) → Exti+1

R (T,B) = 0
is exact.

Conversely, if M ∈ B′, then the special T⊥∞–preenvelope of M yields an
exact sequence 0 → M −→ B −→ C → 0, where B ∈ T⊥∞ (⊆ B′) and C ∈
⊥(T⊥∞) ∩ B′. Moreover, 0 = Ext1R(T,B) → Ext1R(T,C) → Ext2R(T,M) =
Ext1R(Ω(T ),M) = 0 is exact, so C ∈ ⊥(T⊥∞) ∩ T⊥∞ = Add(T ) by Lemma 3.8
(c).

We arrive at the main result of this chapter:

Theorem 3.25. Let R be a ring, T a tilting module, and (A,B) the cotorsion
pair induced by T . Then

(a) T and B are of finite type.

(b) T is equivalent to a tilting module Tfin such that Tfin is A<ω–filtered.
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Proof. (a) The proof is by induction on n = proj dim T . There is nothing
to prove for n = 0, since T is then equivalent to R.

Assume n > 0 and consider the cotorsion pair C = (A′,B′) defined by
B′ = (Ω(T ))⊥∞ , where Ω(T ) is the first syzygy module of T . By Lemma 3.24,
C is a tilting cotorsion pair induced by a tilting module of projective dimension
n − 1, so B′ is of finite type by the inductive premise.

Let A ∈ A≤ω. By Lemma 3.23, in order to prove that T is of finite type, it
suffices to show that A ∈ lim

−→
A<ω.

By assumption, there is an exact sequence 0 → K −→ F −→ A → 0 with F
countably generated projective and K ∈ P≤ω

n−1. For each j > 0 and B′ ∈ B′,

we have Extj+1
R (T,B′) = Extj

R(Ω(T ), B′) = 0. Since A ∈ A, A is a direct
summand in a module filtered by R and by the syzygies of T (see Corollary 1.41
and Lemma 3.8 (a)). We have 0 = Extj+1

R (A,B′) ∼= Extj
R(K,B′) for all j > 0,

so K ∈ A′, and K ∈ (A′)≤ω.
Let C = (A′)<ω (⊆ A<ω). Since B′ is of finite type, K is a direct summand

in a C–filtered module P by Corollary 1.41, so K ⊕ L = P for a module L. By
Theorem 2.20 (for κ = ω) and Lemma 2.29, we can, moreover, assume that P
is countably presented. Let G = P (ω). Then K ⊕ G ∼= (K ⊕ L)(ω) ∼= G, and
there is an exact sequence

0 → G
⊆
−→ H −→ A → 0,

where G and H ∼= F ⊕ G are countably presented and C-filtered. Again by
Theorem 2.20, there exist strictly increasing C–filtrations (Gi | i < ω) of G, and
(Hi | i < ω) of H. Possibly taking a subfiltration of the latter filtration, we
can, moreover, assume that Gi ⊆ Hi for each i < ω. Then A ∼= lim

−→i<ω
Ai where

Ai = Hi/Gi.
It remains to prove that Ai ∈ A<ω for each i < ω.

First we show that Ai ∈ A: since Hi ∈ A, if suffices to extend an arbitrary
homomorphism f ∈ HomR(Gi, B) with B ∈ B to some g ∈ HomR(Hi, B).
However, G/Gi is C-filtered, so G/Gi ∈ A′ ⊆ A. Hence Ext1R(G/Gi, B) = 0,
and f can be extended to h ∈ HomR(G,B). Similarly, since A ∈ A, h extends to
some k ∈ HomR(H,B). Now it suffices to take g = k ↾ Hi. This gives Ai ∈ A.

Finally, we prove that Ai ∈ A<ω. Since A is resolving, it suffices to show
that any finitely generated module M ∈ A is finitely presented. But M is
A≤ω–filtered by Theorem 3.16, so Theorem 2.20 and Lemma 2.29 yield that M

is countably presented. Hence there is an exact sequence 0 → N
⊆
−→ R(m) −→

M → 0, where m < ω and N =
⋃

j<ω Nj , where Nj are finitely generated
submodules of N .

Let Ej denote the injective envelope of N/Nj . Define f : N →
∏

j<ω Ej by
f(n) = (n + Nj)j<ω. Then the image of f is contained in

⊕
j<ω Ej ∈ B. Since

M ∈ A, there is g ∈ HomR(R(m),
⊕

j<ω Ej) such that g ↾ N = f . However, the
image of g is finitely generated, so there exists j < ω such that Nj = N proving
that M is finitely presented.
This proves that A ∈ lim

−→
A<ω, and hence that T is of finite type.

(b) By part (a), B = (A<ω)⊥. By Corollary 1.41 and Lemma 3.8 (c), there
are a A<ω-filtered module Tfin and a module Q ∈ Add(T ) such that Tfin =

Q ⊕ T . Then Tfin is a tilting module with T⊥∞ = T⊥∞

fin , so Tfin is equivalent
to T .
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Of course, there is an explicit construction of the tilting module Tfin avail-
able: the proof of the implication (b) implies (a) in Theorem 3.12 shows that
any iteration of special B–preenvelopes: ϕ0 : R → T0 of the ring R, ϕ1 of the
cokernel of ϕ0 etc., yields a long exact sequence

0 → R
ϕ0
→ T0 → T1 → . . . → Tn−1 → Tn → 0

such that T ′ =
⊕

i≤n Ti is a tilting module equivalent to T . By part (a),

B = C⊥∞ , where C = A<ω. By Theorem 1.40 (a), each of the special B–
preenvelopes ϕi above can be taken so that its cokernel is C–filtered. But then
also each Ti (i ≤ n) is C–filtered, and so is T ′.

In contrast with Theorem 3.16, T itself need not in general possess an A<ω–
filtration. For example, if T = R⊕P , where P is a countably generated projec-
tive module which is not a direct sum of finitely generated projective modules,
then T is not P<ω

0 –filtered.

The fact that tilting classes coincide with the classes of finite type makes it
possible to classify all tilting classes by the resolving subcategories of mod–R.

A class of modules S is called a resolving subcategory of mod–R, if P<ω
0 ⊆

S ⊆ mod-R, S is closed under extensions and direct summands, and A ∈ S,
whenever there is an exact sequence 0 → A −→ B −→ C → 0 with B,C ∈ S (cf.
with Definition 1.18 (i)).

Before characterizing tilting classes by means of resolving subcategories of
bounded projective dimension, we note that the property of being a resolving
subcategory can always be tested in a simplified form:

Lemma 3.26. Let R be a ring and S ⊆ mod–R.
Then S is resolving, if and only if R ∈ S, S is closed under extensions and
direct summands, and A ∈ S, whenever there is an exact sequence 0 → A −→
P −→ C → 0 with P finitely generated projective and C ∈ S.
In particular, if S ⊆ P1, then S is resolving, if and only if R ∈ S and S is
closed under extensions and direct summands.

Proof. The only–if part is clear. Conversely, if R ∈ S and S is closed under
extensions and direct summands, then clearly P<ω

0 ⊆ S.
Consider an exact sequence 0 → A −→ B −→ C → 0 with B,C ∈ S. By

assumption, there is an exact sequence 0 → K −→ P −→ C → 0 with P finitely
generated projective and K ∈ S. Consider the pullback

0 0
y

y

K K
y

y

0 −−−−→ A −−−−→ L −−−−→ P −−−−→ 0
∥∥∥

y
y

0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0
y

y

0 0.
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Since S is closed under extensions, the left–hand column gives L ∈ S. Since
P is projective, the upper row splits, A is a direct summand in L, and hence
A ∈ S.

Theorem 3.27. Let R be a ring and n < ω. There is a bijective correspondence
between n–tilting classes of right R–modules, and resolving subcategories S of
mod-R such that S ⊆ P<ω

n . The correspondence is given by the mutually inverse
assignments C 7→ (⊥C)<ω and S 7→ S⊥.

Proof. Let C be an n–tilting class. By Theorem 3.25, C is of finite type, so
there exists T ⊆ P<ω

n such that C = T ⊥∞ . Then clearly (⊥C)<ω is a resolving
subcategory of mod–R.

Conversely, let S be a resolving subcategory of mod–R such that S ⊆ P<ω
n .

Then C = S⊥ is a class of finite type, so C is n–tilting by Theorem 3.15.
Let C be an n–tilting class, so C = T ⊥∞ for class T ⊆ P<ω

n . Let S = (⊥C)<ω.
Then C = (⊥C)⊥ ⊆ S⊥. Conversely, T ⊆ S, so S⊥ ⊆ T ⊥∞ = C.

Let S be a resolving subcategory of mod–R such that S ⊆ P<ω
n . Clearly

S ⊆ (⊥(S⊥))<ω. By Theorem 2.61, ⊥(S⊥) ⊆ ⊺(S⊺) = lim
−→

S. By Lemma 2.55,

S = (lim
−→

S)<ω, so we conclude that (⊥(S⊥))<ω = S.

Now, we pause to consider two particular cases where tilting classes and/or
modules can be described in more detail. In both cases, we will deal with
1–tilting modules and classes, so we will need the following general result:

Lemma 3.28. Let R be a ring. A module T is 1–tilting, iff Gen(T ) = T⊥. In
this case Pres(T ) = Gen(T ).

Proof. Assume that T is 1–tilting. Then T⊥ is closed under homomorphic
images. Since (T2) says that T (κ) ∈ T⊥, we get Gen(T ) ⊆ T⊥. By Lemma 3.8
(b), T⊥ ⊆ Gen(T ), so Gen(T ) = T⊥.

Conversely, assume that Gen(T ) = T⊥. Let N be a module and E be its
injective hull. Applying HomR(T,−) to 0 → N −→ E −→ E/N → 0, we get
0 = Ext1R(T,E/N) → Ext2R(T,N) → Ext2R(T,E) = 0, since T⊥ is closed under
homomorphic images. So Ext2R(T,−) = 0, i.e. T ∈ P1. Condition (T2) is clear
by assumption.

Now we prove that Pres(T ) = Gen(T ). Let M ∈ Gen(T ). Then the canoni-
cal map ϕ ∈ HomR(T (HomR(T,M)),M) is surjective, so there is an exact sequence

0 → K −→ T (HomR(T,M)) ϕ
−→ M → 0. Applying HomR(T,−), we get

0 → HomR(T,K) → HomR(T, T (HomR(T,M)))
HomR(T,ϕ)

→ HomR(T,M)

→ Ext1R(T,K) → Ext1R(T, T (HomR(T,M))) = 0.

By definition, HomR(T, ϕ) is surjective, so Ext1R(T,K) = 0 and K ∈ Gen(T ).
It remains to verify condition (T3). By condition (T2) and Theorem 1.40,

there is a special T⊥–preenvelope, ψ : R →֒ T0, of R with T1 = Coker(ψ)
isomorphic to a direct sum of copies of T . Since R ∈ ⊥(T⊥), also T0 ∈ ⊥(T⊥).
Since Gen(T ) = Pres(T ), there are a cardinal λ and an exact sequence 0 →
K −→ T (λ) −→ T0 → 0 with K ∈ T⊥. It follows that the sequence splits, and
T0 ∈ Add(T ). So (T3) holds for r = 1.
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In particular, if T is any 1–tilting module, then the 1–tilting class T⊥ =
Gen(T ) is a torsion class, called the tilting torsion class generated by T . The
corresponding torsion–free class is Ker HomR(T,−), so (T⊥,Ker HomR(T,−))
is a (non–hereditary) torsion pair in Mod–R called the tilting torsion pair gen-
erated by T .

Now we will characterize tilting torsion classes among all torsion classes of
modules in terms of approximations.

Theorem 3.29. Let R be a ring and T be a class of modules. The following
conditions are equivalent:

(a) T is a tilting torsion class.

(b) T is a special preenveloping torsion class.

(c) T is a torsion class such that R has a special T –preenvelope.

Proof. (a) implies (b): by Lemma 3.28, T = T⊥ for a 1–tilting module T .
Since proj dim T ≤ 1, T is closed under homomorphic images. By Proposition
3.9, T is closed under direct sums. Now (b) follows by Theorem 1.40 (b).

(b) implies (c): this is trivial.
(c) implies (a): let 0 → R −→ T0 −→ T1 → 0 be a special T –preenvelope of R.

We will prove that T = T0 ⊕ T0 is a 1–tilting module such that Gen(T ) = T .
Since T is a pretorsion class, we have T ∈ T , and Gen(T ) ⊆ T . Let M ∈

T⊥(= T⊥
1 ). The pushout argument from the proof of Lemma 3.8 (b) (for r = 1)

shows that M ∈ Gen(T ). Finally, the T –preenvelope of R is special, so T1 ∈ ⊥T ,
and T ⊆ (⊥T )⊥ ⊆ T⊥

1 = T⊥.
This proves that T⊥ = Gen(T ) = T , so T is 1–tilting by Lemma 3.28.

The equivalence of parts (a) and (b) is in fact a particular case of Theorem
3.12 for n = 1. Indeed, it suffices to verify that ⊥T ⊆ P1 in case T is a special
preenveloping torsion class. But such T contains all homomorphic images of
injective modules. If M ∈ ⊥T , N ∈ Mod–R and E is the injective hull of N , then
0 = Ext1R(M,E/N) → Ext2R(M,N) → Ext2R(M,E) = 0, and Ext2R(M,−) = 0.
So ⊥T ⊆ P1 as required.

It is worthwhile to restate Corollary 3.13 and Theorem 3.27 in the particular
setting of modules of projective dimension ≤ 1:

Corollary 3.30. Let R be a ring and C = (A,B) be a cotorsion pair. Then the
following assertions are equivalent:

(a) C is a 1–tilting cotorsion pair.

(b) A ⊆ P1, and B is closed under direct sums.

Corollary 3.31. Let R be a ring. Then 1–tilting torsion classes C correspond
bijectively to the classes S such that R ∈ S, S ⊆ P<ω

1 and S is closed under
extensions and direct summands. The correspondence is given by the mutually
inverse assignments C 7→ (⊥C)<ω and S 7→ S⊥.
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Proof. This follows immediately from Lemma 3.26 and Theorem 3.27.

It turns out that in the particular setting of artin algebras R, torsion classes
in mod–R are sufficient to classify all 1–tilting classes in Mod–R. Our presen-
tation of this fact follows [57].

The tool making the classification possible is an infinitary version of a well–
known formula by Auslander and Reiten. For its proof we refer to [34].

Lemma 3.32. Let R be an artin algebra, D be the standard duality and τ =
DTr, τ− = TrD be the Auslander–Reiten translations in mod–R. Let M ∈ P<ω

1

and N ∈ Mod–R. Then D(Ext1R(M,N)) ∼= HomR(N, τM).

The following extends the characterization of tilting torsion classes generated
by classical tilting modules over artin algebras by Assem and Hoshino (see [10,
§VI.6]):

Theorem 3.33. Let A be an artin algebra. Then there is a bijective correspon-
dence between 1–tilting classes C ⊆ Mod–R and torsion classes T ⊆ mod–R such
that T contains all finitely generated injective modules. The correspondence is
given by the mutually inverse maps

f : C 7→ C<ω

and

g : T 7→ Ker HomR(−,F)

where (T ,F) is a torsion pair in mod–R.

Proof. If C is a torsion class in Mod–R, then f(C) is a torsion class in
mod–R, since R is right noetherian (see Lemma 2.57 (a)). So f is well–defined.

Let T be a torsion class in mod–R containing I<ω
0 with the corresponding

torsion pair (T ,F) in mod–R. Then T contains all finitely generated cosyzygies
of all simple modules, hence ⊥T consists of modules of projective dimension
≤ 1. (Indeed, if S is a simple module with injective hull E(S), consider the
short exact sequence 0 → S → E(S) → X → 0. For M ∈ ⊥T , we have
0 = Ext1R(M,X) ∼= Ext2R(M,S). Since Ext2R(M,S) = 0 holds for all simple
modules S, we get proj dim M ≤ 1 by Lemma 2.8.)

By Lemma 3.32 (a), for each M ∈ mod–R, M ∈ ⊥T , iff HomR(T , τM) = 0,
iff τM ∈ F . Put τ−F = {M ∈ mod–R | τM ∈ F}. Since F contains no
non–zero injective modules, we have τ(τ−F ) = F for each F ∈ F . As τ−F
consists of modules of projective dimension ≤ 1, Lemma 3.32 (a) yields g(T ) =
Ker HomR(−, τ(τ−F)) = (τ−F)⊥, so g(T ) is a class of finite type, hence 1–
tilting, in Mod–R, and g is well–defined.
Clearly T = {M ∈ mod–R | HomR(M,F ) = 0 for all F ∈ F} = fg(T ).

Conversely, let C be a 1–tilting class in Mod–R. Let T = f(C), (T ,F) be a
torsion pair in mod–R and D = gf(C). Then f(D) = fgf(C) = f(C), that is,
the finitely generated modules in C and D coincide.

We claim that also the pure–injective modules in C and D coincide. To
see this, let M be a module and (fi : M → Fi | i ∈ I) a representative
set (up to isomorphism) of all epimorphisms from M onto a finitely generated
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module. Then any homomorphism from M to a finitely generated module has a
factorization through f : M →

∏
i∈I Fi. Then the map f is a pure embedding.

Since C is a torsion class in Mod–R, we infer that a pure–injective module M
belongs to C, iff M is a direct summand in a (possibly infinite) direct product
of elements of f(C), and similarly for D. However, f(C) = f(D), and the claim
follows.

Since D = (τ−F)⊥, the classes C = S⊥ and D are of finite type, so they are
definable by Theorem 3.15. In particular, a module belongs to C, if and only
if its pure–injective envelope does (see Lemma 1.38), and similarly for D. It
follows that C = D, that is, C = gf(C).

As an example, we will consider the correspondence from Theorem 3.33 in
the particular setting of Examples 3.4 and 3.5.

Example 3.34. Let R be a connected tame hereditary algebra over a field k,
P be a non–empty set of tubes, and TP be the corresponding Ringel tilting
module (see Example 3.4). Then the corresponding torsion class in mod–R is
T⊥

P ∩mod–R which consists of all preinjective modules and all regular modules
in the tubes not in P .

If R is a connected hereditary algebra of infinite representation type and TP

is the Lukas tilting module from Example 3.5 (b), then the corresponding torsion
class in mod–R consists of all regular modules and all preinjective modules.

If R is a connected wild hereditary algebra and TM is the Lukas divisible
module from Example 3.5 (a), then the corresponding torsion class in mod–R
is the class of all preinjective modules.

Notice that neither of the tilting modules TP and TM above is equivalent to
a finitely generated tilting module.

As our second example, we consider the case of Dedekind domains.
Recall from Example 3.3 that given a Dedekind domain R and a set of max-

imal ideals P ⊆ mspec R, RP denotes the module π−1(
⊕

p∈P E(R/p)), where
π : Q → Q/R is the canonical projection. By 3.3, TP = RP ⊕

⊕
p∈P E(R/p) is

a 1–tilting module with the corresponding tilting class

T⊥
P = (

⊕

p∈P

R/p)⊥ = {M ∈ Mod–R | Mp = M for all p ∈ P}.

Theorem 3.35. Let R be a Dedekind domain.

(a) There is a bijective correspondence between the set of all tilting classes in
Mod–R and all subsets of the maximal spectrum mspec R. The correspon-
dence is given by the mutually inverse assignments

C 7→ PC = {p ∈ mspec R | Mp = M for all M ∈ C}

and
P 7→ CP = {M ∈ Mod–R | Mp = M for all p ∈ P}.

(b) The set of Bass tilting modules {TP | P ⊆ mspec R} is a representative
set (up to equivalence) of the class of all tilting modules.
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Proof. (a) Since R is a hereditary noetherian ring, by Theorem 3.27, tilt-
ing classes in Mod–R correspond bijectively to the resolving subcategories S ⊆
mod–R, that is, the subcategories S containing all finitely generated projective
modules and closed under finite direct sums, direct summands (and submod-
ules).

By Steinitz Theorem, each finitely generated R–module is a finite direct sum
of a projective module and some modules of the form R/pn where p are maximal
ideals of R and 0 < n < ω. So resolving subcategories S correspond bijectively
to subsets P ⊆ mspec R as follows: given P , SP consists of all finitely generated
modules whose q–primary components are zero for all q /∈ P . The corresponding
tilting class TP = S⊥

P = {M ∈ Mod–R | Ext1R(R/p,M) = 0 for all p ∈ P} = CP .
(b) We show that any tilting module T is equivalent to TP for some P ⊆

mspec R. By part (a), T⊥ = {M ∈ Mod–R | Mp = M for all p ∈ P} for a
set of maximal ideals P . But the latter class equals T⊥

P , so T is equivalent to
TP . Finally, if P 6= P ′, then TP is not equivalent to TP ′ (by part (a), or simply
because R/p ∈ T⊥

P ′ \ T⊥
P whenever p ∈ P \ P ′).

We finish this chapter by considering the dual case of cotilting (left R–)
modules. We start with a definition:

Definition 3.36. A left R–module C is cotilting provided that

(C1) C has finite injective dimension.

(C2) Exti
R(Cκ, C) = 0 for all 1 ≤ i < ω and all cardinals κ.

(C3) There is r ≥ 0 and a long exact sequence 0 → Cr → . . . → C1 → C0 →
W → 0, where Ci ∈ Prod(C) for all i ≤ r and W is an injective cogenerator
for R–Mod.

If n < ω and C is a cotilting left R–module of injective dimension ≤ n, then C
is called n–cotilting. The class ⊥∞C (⊆ R–Mod) is the n–cotilting class induced
by C. Clearly (⊥∞C, (⊥∞C)⊥) is a hereditary cotorsion pair in R–Mod, called
the n–cotilting cotorsion pair induced by C.
If C and C ′ are cotilting left R–modules, then C ′ is equivalent to C provided
that the induced cotilting classes coincide, that is, ⊥∞C = ⊥∞C ′.

Clearly 0–cotilting modules coincide with injective cogenerators for R–Mod.

Since each tilting module is of finite type, the duality (−)d yields an easy way of
producing n–cotilting left R–modules from n–tilting (right R–) modules. (Recall
that given a right R–module M , the dual left R–module, Md, is defined by
Md = HomS(M,E), where E is an injective cogenerator for S–Mod and R is
an S–algebra.)

Theorem 3.37. Let R be a ring, n ≥ 0 and T be an n–tilting module. Then
the dual module T d is an n–cotilting left R–module with the induced n–cotilting
class

C = T ⊺∞ = {M ∈ R–Mod | TorR
i (T,M) = 0 for all i ≤ n}.

Moreover, if X ⊆ P<ω
n is such that T⊥∞ = X⊥∞ , then C = X ⊺∞ .
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Proof. Clearly, if M ∈ Mod–R is projective, then Md is an injective left
R–module. Similarly, if M is a generator for Mod–R, then Md is a cogenerator
for R–Mod, and M ∈ Add(T ) implies Md ∈ Prod(T d). This proves conditions
(C1) and (C3) for C = T d.

Let κ be a cardinal. Then for each i ≥ 1, Exti
R(Cκ, C) = 0, iff TorR

i (T,Cκ) =
0. Let S = (⊥(T⊥∞))<ω (⊆ Pn). By Theorem 3.25, T is of finite type, so
S⊥ = T⊥∞ . Let U = T ⊕Ω1(T )⊕· · ·⊕Ωn−1(T ), the direct sum of the syzygies
of T . Then T ∈ ⊥(U⊥) = ⊥(S⊥) ⊆ lim

−→
S by Corollary 2.62.

Since the Tor–functor commutes with lim
−→

, in order to prove condition (C2)

it suffices to show that TorR
i (S, Cκ) = 0 (for each i ≥ 1 and each cardinal

κ). However, S ⊆ mod–R and Cκ = (T (κ))d, so the latter is equivalent to
Exti

R(S, T (κ)) = 0. This holds since S ⊆ ⊥(T⊥∞) and T (κ) ∈ T⊥∞ by condition
(T2) defining the tilting module T .

Now ⊥∞C = T ⊺∞ , which gives the first claim since T has projective dimen-
sion ≤ n.

For the final claim, let Q be a set containing R and a representative set of
elements of X and their syzygies. Then Q⊥ = X⊥∞ = U⊥ and Q⊺ = X ⊺∞ . By
Corollary 1.41, Q consists of direct summands of {U,R}–filtered modules, and
vice versa, U is a direct summand of a Q–filtered module. By Corollary 1.32,
Q⊺ = U⊺ = T ⊺∞ , so C = X ⊺∞ .

We pause to consider an example:

Example 3.38. Let R be a commutative 1–Iwanaga–Gorenstein ring (see Ex-
ample 3.3). For i = 0, 1 let Pi = {p ∈ specR | ht(p) = i}, and let Q =⊕

p∈P0
E(R/p).

As in Example 3.3, R has a minimal injective coresolution of the form

0 → R →
⊕

q∈P0

E(R/q)
π
→

⊕

p∈P1

E(R/p) → 0,

and for each subset P ⊆ P1 there is a Bass (1–) tilting module TP = RP ⊕⊕
p∈P E(R/p), where RP = π−1(

⊕
p∈P E(R/p)), and TP generates the tilting

class T⊥
P = {M | Ext1R(E(R/p),M) = 0 for all p ∈ P}.

Consider the injective cogenerator E =
⊕

p∈mspec R E(R/p). By Theorem

3.37, CP = (TP )d = HomR(TP , E) is a (1–) cotilting module, called the Bass
cotilting module. Notice that (

⊕
p∈P E(R/p))d ∼=

∏
p∈P Jp, the product of the

p–adic modules over p ∈ P . Since Q is a flat module and the sequence 0 →
RP −→ Q −→

⊕
q∈P1\P E(R/q) → 0 is exact and its last term is injective, hence

of flat dimension ≤ 1, we infer that RP is flat, and hence (RP )d is injective. So
the corresponding cotilting class is

CP = ⊥CP = {M ∈ Mod–R | Ext1R(M,
∏

p∈P

Jp) = 0}

= {M ∈ Mod–R | TorR
1 (E(R/p),M) = 0 for all p ∈ P}.

There is a dual version of Lemma 3.8 for cotilting modules:

Lemma 3.39. Let R be a ring, n ≥ 0 and C be an n–cotilting left R–module.
Denote by C = (A,B) the n–cotilting cotorsion pair induced by C.
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(a) A ⊆ Cogen(C) and B ⊆ In.

(b) Each of the short exact sequences forming the long exact sequence in (C3)
is given by a special A–precover of an element of B. The length r in (C3)
can be taken ≤ n.

(c) The kernel of C equals Prod(C).

(d) Each M ∈ A ∩ In has Prod(T )–coresolution dimension ≤ n.

Proof. (a) Since C ∈ In and (⊥In, In) is a cotorsion pair (see Theorem
2.7), we have B ⊆ In.

The rest of the proof is dual to the one for Lemma 3.8 (with the injective
cogenerator W in R–Mod replacing the projective generator R).

By Lemma 3.39 (c), the kernel of the cotorsion pair C equals Prod(C). The
proof of Proposition 3.9 can be dualized to prove

Proposition 3.40. Let R be a ring, n ≥ 0, C be an n–cotilting left R–module
and C = (A,B) the n–cotilting cotorsion pair induced by C.

(a) A coincides with the class of all Prod(C)–coresolved modules. In particu-
lar, A is closed under direct products.

(b) B coincides with the class of all Prod(C)–resolved modules of Prod(C)–
resolution dimension ≤ n.

As in Corollary 3.10, we can replace Prod(C)–(co)resolutions in Proposition
3.40 by Q–(co)resolutions, where Q = {Cκ | κ ≥ 0}; n–cotilting left R–modules
can then be characterized by the dual property of ⊥∞C = Cogn(C).

Moreover, dually to Lemma 3.11, we obtain that if C1 and C2 are cotilt-
ing left R–modules, then C1 is equivalent to C2, iff Prod(C1) = Prod(C2), iff
Prod(C1) ⊆ Prod(C2).

The crucial property of cotilting modules making the dualization of the the-
ory of tilting modules possible is their pure–injectivity. It was proved in many
steps: first for abelian groups [46], and then for modules over Dedekind and
Prüfer domains [39], [22], and for 1–cotilting modules over arbitrary rings [17].
The general case of n–cotilting modules was first settled for countable rings in
[22]; the case of arbitrary rings is due to Šťov́ıček, [70].

Theorem 3.41. Let R be a ring, n ≥ 0 and C be an n–cotilting left R–module.
Denote by C = (A,B) the n–cotilting cotorsion pair induced by C.

Then C is pure–injective, A is definable, and C is a perfect cotorsion pair.

Proof. By Lemma 3.39 (a), B ⊆ In. By Proposition 3.40 (a), A is closed
under direct products. Since C is a hereditary cotorsion pair, Theorem 2.35
applies and yields that A is definable and C is perfect.

In order to prove that C is pure–injective, it suffices to show that for each
cardinal κ, Ext1R(Cκ/C(κ), C) = 0. Then the summation map Σ : C(κ) → C
extends to Cκ, so C is pure–injective by [56, §7].

Clearly the module C(κ) is a direct limit of the direct system consisting of
the modules C(F ), where F runs over all finite subsets of κ. Then Cκ/C(κ) =
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lim
−→F

Cκ/C(F ). Since Cκ/C(F ) ∼= Cκ\F ∈ A by condition (C2), and A is closed

under direct limits, we conclude that Cκ/C(κ) ∈ A.

A bimodule RCS is an n–cotilting bimodule provided that C ∈ R–Mod and
C ∈ Mod–S are n–cotilting modules and RCS is faithfully balanced. For ex-
ample, Morita bimodules (i.e., faithfully balanced bimodules which are injective
cogenerators on either side) are exactly the 0–cotilting bimodules.

Since cotilting modules are pure–injective, their endomorphism rings S have
rather strong properties: S/Rad(S) is von Neumann regular, right self–injective,
and idempotents lift modulo Rad(S). This follows from the analogous well–
known properties of endomorphism rings of injective objects in Grothendieck
categories (cf. the proof of Proposition 1.10). These strong properties explain
why cotilting bimodules occur rarely as compared to tilting bimodules.

If RCS is a Morita bimodule, then C induces a Morita duality between
R–mod and mod–S, [2, §24]. Similarly, each 1–cotilting bimodule induces a
“generalized Morita duality”. We refer to [31] for the role of cotilting bimodules
in the duality theory for module categories.

Now we can characterize n–cotilting classes and n–cotilting cotorsion pairs
by their closure properties:

Theorem 3.42. Let R be a ring, n < ω and C be a class of left R–modules.
Then the following assertions are equivalent:

(a) C is n–cotilting.

(b) C is resolving, covering, closed under direct products and direct summands,
and C⊥ ⊆ In.

Proof. (a) implies (b): this is an immediate consequence of Lemma 3.39
(a) and Theorem 3.41.

(b) implies (a): this is proved dually to the implication (b) implies (a) in
Theorem 3.12.

Corollary 3.43. Let n < ω. Let R be a ring and C = (A,B) be a cotorsion
pair in R–Mod. Then the following assertions are equivalent:

(a) C is an n–cotilting cotorsion pair.

(b) C is a hereditary (and perfect) cotorsion pair such that B ⊆ In and A is
closed under direct products.

Proof. (a) implies (b): by Theorems 3.41 and 3.42 for C = A.
(b) implies (a): in view of Theorem 3.42, we only have to prove that per-

fectness of C follows from the other assumptions on C. However, this holds by
Theorem 2.35 (b).

By Theorem 3.37, the dual module of any tilting module is cotilting. Sim-
ilarly as all tilting modules and classes are of finite type, the duals of tilting
modules and classes are exactly the cotilting modules and classes of cofinite
type, defined as follows:

80



Definition 3.44. Let R be a ring.
Let C be a class of left R–modules. Then C is of cofinite type provided there
exist n < ω and S ⊆ P<ω

n such that C = S⊺∞ .
Let C be a left R–module. Then C is of cofinite type provided that the class
⊥∞C is of cofinite type.

Let C be a class of cofinite type and A = ⊺C (= ⊺∞C). Then clearly C =
(A<ω)⊺∞ , so S = A<ω is the largest possible choice for S in the Definition 3.44.

Any class of cofinite type is a cotilting class:

Proposition 3.45. Let R be a ring and C be a class of left R–modules of cofinite
type. Then C is cotilting (and definable).

Proof. By assumption, there are n < ω and S ⊆ P<ω
n such that C = S⊺∞ .

Let Sd = {Sd | S ∈ S}. Then C = ⊥∞(Sd) by Lemma 1.31 (b), so C is resolving,
and it is a covering class by Corollary 1.51. Since S ⊆ mod–R, the functor
TorR

1 (S,−) commutes with direct products, whenever S ∈ S or S ∈ mod–R
is a syzygy of a module in S (see e.g. [40, §3.2]). So C is closed under direct
products. Since Sd ⊆ In, also C⊥ ⊆ In. By Corollary 3.42, we infer that C is
an n–cotilting class.

Finally, each cotilting class is definable by Theorem 3.41.

Notice that if C is of cofinite type, then, by Lemma 1.31, the least n such that
the class C = ⊥∞(Sd) is n–cotilting coincides with the least n such that S ⊆ Fn.
However, S ⊆ mod–R, and finitely presented flat modules are projective, so this
is exactly the least n such that S ⊆ P<ω

n .

The essential difference between the tilting and cotilting setting is that the
converse of Proposition 3.45 does not hold in general. In Example 3.55 below,
we will construct a 1–cotilting class over a valuation domain which is not of
cofinite type. So in general there exist more cotilting modules than just duals
of the tilting ones. However, for many classes of rings, all cotilting modules are
of cofinite type, so this surprising phenomenon does not occur.

Theorem 3.46. Let R be a ring and n < ω.

(a) Let C be an n–cotilting left R–module. Then C is of cofinite type, if and
only if there is an n–tilting module TC such that C is equivalent to T d

C .

(b) If C and C ′ are n–cotilting modules of cofinite type, then C ′ is equivalent
to C, if and only if the n–tilting modules TC and TC′ are equivalent. In
particular, TC is uniquely determined by C up to equivalence of tilting
modules.

Proof. (a) Assume that C is of cofinite type. By the remark after Definition
3.44, there is S ⊆ P<ω

n such that ⊥∞C = S⊺∞ and we can w.l.o.g. assume that
S = ⊺(S⊺∞) ∩ mod–R (so in particular, S a resolving subcategory of mod–R).
Since the class S⊥ is of finite type (see Definition 3.14), there is an (n–) tilting
module TC such that T⊥∞

C = S⊥. By Theorem 3.37, T d
C is an n–cotilting left

R–module inducing the cotilting class T ⊺∞

C = S⊺∞ = ⊥∞C, so T d
C is equivalent

to C.
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Conversely, assume that C is equivalent to T d for an n–tilting module T .
Since T is of finite type, there is S ⊆ P<ω

n such that T⊥∞ = S⊥∞ , so ⊥∞C =
T ⊺∞

C = S⊺∞ by Theorem 3.37, hence C is of cofinite type.
(b) Assume that T and T ′ are tilting modules such that C = T d is equivalent
to C ′ = (T ′)d. Then (T ′)⊺∞ = T ⊺∞ by Lemma 1.31. Let (A,B) and (A′,B′) be
the tilting cotorsion pairs induced by T and T ′. Let S = A<ω and S ′ = (A′)<ω.
By Theorem 2.61, S = (lim

−→
S)<ω = ⊺(S⊺) ∩ mod–R = ⊺(T ⊺∞) ∩ mod–R, and

similarly for S ′ and T ′, so S = S ′. By Theorem 3.25, S⊥ = B, and similarly
(S ′)⊥ = B′ so B = B′, that is, T and T ′ are equivalent tilting modules.
Conversely, if TC and TC′ are equivalent, then TC′ ∈ Add(TC), hence T d

C′ ∈
Prod(T d

C), so T d
C′ is equivalent to T d

C .

In particular, if U = {Ui | i ∈ I} is a representative set of all tilting modules
up to equivalence, then Ud = {Ud

i | i ∈ I} is a representative set of all cotilting
modules of cofinite type up to equivalence.

The classes of finite type correspond to resolving subcategories in mod–R. In
view of Theorem 3.46, it is not surprising that there is a similar correspondence
for the classes of cofinite type:

Theorem 3.47. Let R be a ring and n < ω. There is a bijective correspondence
between n–cotilting classes of cofinite type in R–Mod and resolving subcategories
S of mod–R such that S ⊆ P<ω

n . The correspondence is given by the mutually
inverse assignments C 7→ (⊺C)<ω and S 7→ S⊺.

Proof. Let C be an n–cotilting class of cofinite type in R–Mod. So there
is a class T ⊆ P<ω

n such that C = T ⊺∞ . Then clearly (⊺C)<ω is a resolving
subcategory of mod–R.

Conversely, let S be a resolving subcategory of mod–R such that S ⊆ P<ω
n .

Then C = S⊺ is a class of cofinite type, so C is n–cotilting by Proposition 3.45.
Let C be an n–cotilting class of cofinite type in R–Mod, so C = S⊺∞ for a

class S ⊆ P<ω
n . W.l.o.g., S = (⊺C)<ω, and hence S⊺ = S⊺∞ = C.

Let S be a resolving subcategory of mod–R such that S ⊆ P<ω
n . By Theorem

2.61, ⊺(S⊺) = lim
−→

S. By Lemma 2.55, S coincides with the class of all finitely
presented modules in lim

−→
S. So S = (lim

−→
S)<ω = (⊺(S⊺))<ω.

Now, we turn to the particular case of 1–cotilting modules. They can be
characterized in terms of the classes they cogenerate as follows:

Lemma 3.48. Let R be a ring. A module C is 1–cotilting, iff Cogen(C) = ⊥C.

Proof. Dual to the proof of Lemma 3.28.

It follows that if C is 1–cotilting, then Cogen(C) is a torsion–free class of
modules, called the cotilting torsion–free class cogenerated by C.

We will characterize cotilting torsion–free classes among all torsion–free
classes of modules in terms of approximations:

Theorem 3.49. Let R be a ring and F be a pretorsion–free class of left R–
modules. Let W be an injective cogenerator for R–Mod. Then the following are
equivalent:
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(a) F is a cotilting torsion–free class.

(b) F is a covering class.

(c) F is a special precovering class.

(d) W has a special F–precover.

Proof. (a) implies (b) by Theorem 3.42, (b) implies (c) by Lemma 1.12 (b),
and (c) trivially implies (d).

(d) implies (a): let 0 → C1 −→ C2 −→ W → 0 be a special F–precover of W .
A dual proof to that of Theorem 3.29 shows that C = C1 ⊕ C2 is a cotilting
module such that Cogen(C) = F .

Now we can easily show that in the particular case of left noetherian rings,
1–cotilting torsion–free classes are completely determined by their finitely gen-
erated modules. This result goes back to Buan and Krause [30].

Theorem 3.50. Let R be a left noetherian ring. Then there is a bijective
correspondence between the 1–cotilting classes C in R–Mod and the torsion–free
classes E in R–mod containing R. The correspondence is given by the mutually
inverse assignments

C 7→ C ∩ R–mod and E 7→ lim
−→

E .

Proof. If C is 1–cotilting then C is a torsion–free class in R–Mod containing
R. By (the left–hand version of) Lemma 2.57 (a), C ∩ R–mod is a torsion–free
class in R–mod.

Conversely, given E as in the claim, let C = lim
−→

E . By Lemma 2.57 (b), C
is a torsion–free class in R–Mod. Since R ∈ E , we have C = (⊺E)⊺ by (a left
R-module version of) Theorem 2.61. So C is a covering class by Theorem 1.54.
By Theorem 3.49, C is 1–cotilting.

Now E = lim
−→

E ∩ R–mod by Lemma 2.55. Conversely, given a 1–cotilting
class C in R–Mod, each M ∈ C is a directed union of the system of all its finitely
generated submodules, {Mi | i ∈ I}. Since C is 1–cotilting, Mi ∈ C for each
i ∈ I. So C = lim

−→
(C ∩ R–mod), and the assignments are mutually inverse.

There is a general criterion for a 1–cotilting class to be of cofinite type:

Proposition 3.51. Let R be a ring and C be a class of left R–modules. Then
C is 1–cotilting of cofinite type, if and only if there is a module M ∈ P1 such
that C = M⊺.

Proof. For the only–if–part, consider S ⊆ P<ω
n such that C = S⊺∞ . Let M

be the direct sum of a representative set of all modules in S. Then C = M⊺∞ =
⊥∞Md. Since C is 1–cotilting, C⊥ ⊆ I1, so Md ∈ I1, hence M ∈ F1 by Lemma
1.31. So S ⊆ F1 ∩ mod–R = P<ω

1 (since finitely presented flat modules are
projective). So M ∈ P1, and C = M⊺.

For the if–part, we consider the cotorsion pair (A,B) generated by M . Since
A ⊆ P1, the claim will follow once we prove that M⊺ = (A<ω)⊺. If N ∈ M⊺,
then Nd ∈ B, so N ∈ A⊺ ⊆ (A<ω)⊺. Conversely, by Theorem 2.61 and Lemma
2.63, M ∈ lim

−→
A<ω = ⊺((A<ω)⊺), so M⊺ ⊇ (A<ω)⊺.
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Now we can prove that in many cases, all 1–cotilting classes are of cofinite
type:

Theorem 3.52. Let R be a left noetherian ring such that F1 = P1 (this occurs
when R is right hereditary, or right perfect, or 1–Iwanaga–Gorenstein). Then
all 1–cotilting classes are of cofinite type, that is, all 1–cotilting left R–modules
are equivalent to duals of 1–tilting (right R–) modules.

Proof. Let C ⊆ R–Mod be a 1–cotilting class. By a version of Theorem
2.61 for left R–modules, and by Theorem 3.50, C = D⊺, where D = ⊺(C<ω).
Since C is closed under submodules, we have D ⊆ F1.

By Lemma 1.52, each module D ∈ D is D≤κ–filtered, where κ = |R| + ℵ0.
Let M be the direct sum of a representative set of all modules in D≤κ. By
Corollary 1.32 C = M⊺.

Finally, since D ⊆ F1 = P1 by assumption, we conclude that C is of cofinite
type by Proposition 3.51.

In particular, if R is left artinian or 1–Iwanaga–Gorenstein, then we can
describe 1–cotilting classes either by means of the torsion–free classes in R–mod
containing R (as in Theorem 3.50), or by means of the subcategories S ⊆ mod–R
closed under extensions and direct summands and satisfying P<ω

0 ⊆ S ⊆ P<ω
1

(as in Corollary 3.31).

As an application we consider in more detail the case of Dedekind domains.
Given a Dedekind domain R and a set of maximal ideals P ⊆ mspec R, we
define a module QP by

QP = Q ⊕
⊕

q∈mspec R\P

E(R/q) ⊕
∏

p∈P

Jp.

Given an ideal I of R, we will call a module M ∈ R–Mod I–torsion–free
provided that TorR

1 (R/I,M) = 0. Denote by CP the class of all left R–modules
that are p–torsion–free for all p ∈ P , that is,

CP = {M ∈ R–Mod | TorR
1 (R/p,M) = 0 for all p ∈ P}.

Theorem 3.53. Let R be a Dedekind domain.

(a) Let C be a class of modules. Then C is cotilting, iff there is a set of maximal
ideals, P , such that C = CP .

(b) The set {QP | P ⊆ mspec R} is a representative set (up to equivalence) of
the class of all cotilting modules.

Proof. (a) Clearly, given P ⊆ mspec R, CP is a class of cofinite type, hence
a cotilting one by Proposition 3.45.

Conversely, if C is cotilting, then C is of cofinite type by Theorem 3.52, so by
Theorems 3.35 and 3.46, there is a subset P ⊆ mspec R such that C = T ⊺

P . By

Example 3.38, C = {M ∈ Mod–R | TorR
1 (E(R/p),M) = 0 ∀p ∈ P}. Since R

is hereditary and E(R/p) is {R/p}–filtered for each p ∈ mspec R, the condition
TorR

1 (E(R/p),M) = 0 is equivalent to TorR
1 (R/p,M) = 0, for each p ∈ P , and

the claim follows.
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(b) In view of Theorems 3.35, 3.46 and 3.52, it suffices to prove that for each
P ⊆ mspec R, QP is a cotilting module equivalent to the cotilting module CP

defined in Example 3.38.
Condition (C1) for QP is clear. For (C2), since Q ⊕ JP is flat and JP is

pure–injective, where JP =
∏

p∈P Jp, it suffices to prove that Ext1R(Iκ, JP ) = 0,
where Iκ = (

⊕
q∈mspec R\P E(R/q))κ, for each κ. However, Iκ is an injective

module, and it is easy to see that Iκ has no indecomposable direct summands
isomorphic to E(R/p) for p ∈ P . Since Jp is q–divisible for all p ∈ P and q ∈
mspec R \ P , we infer that Ext1R(Iκ, JP ) = 0. For condition (C3), consider the
exact sequence 0 → JP −→ E(JP ) −→ E(JP )/JP → 0. Then E(JP ) ∼= Q(λ) and
E(JP )/JP

∼=
⊕

p∈P E(R/p)(αp) for some cardinals λ > 0 and αp > 0 (p ∈ P ).
Let W = E(JP )/JP⊕

⊕
q∈mspec R\P E(R/q). Then W is an injective cogenerator

for Mod–R, and the exact sequence 0 → JP −→ E(JP )⊕
⊕

q∈mspec R\P E(R/q) −→

W → 0 proves (C3).
Finally, ⊥QP = ⊥CP = ⊥JP , so QP and CP are equivalent.

In fact, the cotilting torsion–free classes over any Dedekind domain corre-
spond bijectively to Tor–pairs:

Theorem 3.54. Let R be a Dedekind domain. Let C ⊆ Mod–R. The following
conditions are equivalent:

(a) (C, C⊺) is a Tor–pair.

(b) (C, C⊥) is a cotorsion pair such that C ⊇ FL.

(c) There is a subset P ⊆ mspec R such that C is the class of all modules
which are p–torsion–free for all p ∈ P .

(d) C is a cotilting torsion–free class.

For a proof of Theorem 3.54, we refer to [46].

We finish this chapter by an example of a cotilting class that is not of cofinite
type due to Bazzoni:

Example 3.55. Let R be a maximal valuation domain with a non–principal
maximal ideal p (see [44, XIII.5]). Then R is pure–injective, so the class W1

of all Whitehead modules is a covering class by Theorem 1.48. Since R has
injective dimension ≤ 1 by Theorem 2.45, W1 is closed under submodules and
extensions. In order to prove that W1 is a cotilting torsion–free class, it suffices
to show that M ∈ W1, iff p annihilates the torsion part t(M) of M (then if 0 6= x
is an element in a direct product of Whitehead modules and Ann(x) 6= 0, then
Ann(x) = p, so W1 is closed under direct products, and Theorem 3.49 applies).

First, since torsion–free modules are flat and R is pure–injective (see Theo-
rem 2.45), M ∈ W1, iff t(M) ∈ W1.

Assume that pt(M) = 0. Then t(M) ∼= (R/p)(α), so it suffices to prove that
Ext1R(R/p,R) = 0. Note that Ext1R(R/p,R) ∼= (Q/R)[p]/((Q[p] +R)/R), where
M [p] denotes the set of all elements x ∈ M annihilated by p. (This follows
by applying HomR(R/p,−) to the exact sequence 0 → R −→ Q −→ Q/R → 0,
and identifying HomR(R/p,N) with N [p] for N = Q and N = Q/R.) So
Ext1R(R/p,R) = 0, iff (Q/R)[p] = 0. Let (R : p) = {x ∈ Q | x.p ⊆ R}. Since p
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is non–principal, (R : p) = R, so (Q/R)[p] = (R : p)/R = 0. This proves that
pt(M) = 0 implies M ∈ W1.

Conversely, assume that M is a torsion Whitehead module and consider
0 6= x ∈ M . Then Ext1R(Rx,R) = 0. Let I = Annx. Then as above 0 =
Ext1R(R/I,R) ∼= (Q/R)[I]/((Q[I] + R)/R), so (Q/R)[I] = (R : I)/R = 0, and
(R : I) = R. Then I is not principal, so I(R : I) = I♯ where I♯ is the prime ideal
associated with I. But then I = I♯, and since (R : J) = R(J) for every prime
ideal J , we conclude that I = p. This proves that M ∈ W1 implies pt(M) = 0,
and finishes the proof that W1 is a cotilting torsion–free class.

Finally, we show that W1 is not of cofinite type. Assume there is S ⊆
mod–R = P<ω

1 such that W1 = S⊺. Since R is a valuation domain, finitely
presented modules coincide with direct sums of cyclically presented modules.
So there is a set of non–zero elements {rα | α < κ} ⊆ p such that W1 = {M |
TorR

1 (R/rαR,M) = 0 ∀α < κ}. However, TorR
1 (R/rαR,M) ∼= M [rα], so in

particular TorR
1 (R/rαR,R/p) ∼= R/p 6= 0. However, R/p ∈ W1, a contradiction.

4 Application 1: The structure of Matlis local-

izations

In this section we will employ infinitely generated 1–tilting modules in develop-
ing structure theory of Matlis localizations, that is, the localizations of commu-
tative rings R at multiplicative sets S consisting of non–zero–divisors such that
proj dim S−1R ≤ 1. As an application, we will then consider the existence of
minimal versions of tilting approximations. Our approach is based on [5] and
[72].

First, we will need a number of preliminary definitions and results. We start
with the ones related to the spectrum, spec R:

Let R be a commutative ring, and S a multiplicative subset of R. We write
V (S) = {P ∈ spec R | P ∩ S = ∅}. Recall that V (S) is canonically isomorphic
to spec S−1R. Clearly, if S ⊆ S′, then V (S′) ⊆ V (S).

Denote by Σ the multiplicative subset consisting of all non–zero–divisors in
R. Let S be a multiplicative subset of R. If s and s′ are elements of R such
that ss′ ∈ S, then s and s′ are invertible in the localization S−1R. Hence
S−1R = (S′)−1R, where S′ = {t ∈ R|s = tt′ for some s ∈ S and t′ ∈ R} is a
saturated multiplicative subset containing S. S′ is called the saturation of S.

If S is a multiplicative subset of R, and I is an ideal of R such that I∩S = ∅,
then it is well–known that the set C = {J ≤ R | I ⊆ J and J ∩ S = ∅} has
maximal elements and that any such maximal element is a prime ideal of R.

Let now S ⊆ Σ be a saturated multiplicative subset. Then any x ∈ R \ S
satisfies xR ∩ S = ∅ and thus is contained in a prime ideal from V (S), so
S = R \

⋃
P∈V (S) P .

Similarly, if S is a multiplicative subset of Σ, then its saturation is easily
seen to coincide with S′ = R \

⋃
P∈V (S) P .

Observe that Σ is an example of a saturated multiplicative subset of R.
Hence R \ Σ is a union of prime ideals of R, and it can be proved that the
minimal primes of R are in this union.
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More generally, let M be a non–zero R–module. The set of elements in R
such that multiplication by them induces an injective endomorphism of M is a
saturated multiplicative subset of R.

Dually, the set of elements in R such that multiplication by them is a sur-
jective endomorphism of M is also a saturated multiplicative subset of R.

We now present some results concerning the module S−1R/R. In particular,
we study its endomorphism ring and show that the direct sum decompositions
of S−1R/R have quite nice properties.

Proposition 4.1. Let R be a commutative ring. Let S be a multiplicative subset
of Σ. Then R is canonically a subring of S−1R and the following holds true:

(a) If f ∈ EndR(S−1R/R) and x ∈ S−1R/R, then f(x) ∈ xR. In particular
EndR(S−1R/R) is a commutative ring.

(b) If S−1R/R =
⊕

i∈I Ai and B ⊆ S−1R/R, then B =
⊕

i∈I(B ∩ Ai).

(c) If S−1R/R = A ⊕ B = A ⊕ B′, then B = B′. Moreover, if A and A′

are direct summands in S−1R/R, then also A ∩ A′ and A + A′ are direct
summands in S−1R/R.

(d) Assume S−1R/R =
⊕

i∈I Ai. If i 6= j, then HomR(Ai, Aj) = 0.

Proof. (a) Let f ∈ EndR(S−1R/R). Let x ∈ S−1R/R, and let s ∈ S. Then
sx = 0, if and only if x ∈ ( 1

s + R)R. Hence f( 1
s + R) ∈ ( 1

s + R)R for any s ∈ S,
and then f(x) ∈ xR for any x ∈ S−1R/R.

(b) For any i ∈ I, let πi : S−1R/R → Ai ⊆ S−1R/R denote the projection
onto Ai. By part (a), for any x ∈ S−1R/R, πi(x) ∈ xR ∩ Ai. This shows that
xR =

⊕
i∈I(xR ∩ Ai) for any x ∈ S−1R/R. Then the same is true for any

submodule B of S−1R/R.
(c) For the first statement, apply (b) to see that B′ = (A∩B′)⊕ (B ∩B′) =

B ∩ B′ ⊆ B. By symmetry B = B′. For the second statement, let S−1R/R =
A⊕B = A′ ⊕B′. Then (b) yields A + A′ = (A∩A′)⊕ (A∩B′)⊕ (A′ ∩B). So
(A + A′) ∩ (B ∩ B′) = 0, and (A + A′) ⊕ (B ∩ B′) = S−1R/R.

(d) For any i ∈ I, let πi : S−1R/R → Ai denote the canonical projection.
Let i, j ∈ I, i 6= j, and let f ∈ HomR(Ai, Aj). We can apply part (a) to
f ◦ πi ∈ EndR(S−1R/R) to deduce that f(x) ∈ xR ∩ Aj ⊆ Ai ∩ Aj = 0 for any
x ∈ Ai. Hence f = 0.

We arrive at the notion of a restriction due to Hamsher [48]:

Definition 4.2. Let R be a commutative ring and M a module. A submodule
N ⊆ M is a restriction of M , if for each prime (equivalently, maximal) ideal p
of R, the localization N(p) of N at p satisfies N(p) = 0 or N(p) = M(p).

An example of restriction is a direct summand of a cyclic module, because a
cyclic module over a local ring is indecomposable. Proposition 4.4 gives another
example of restriction. Both of them will be needed in Theorem 4.7.

Lemma 4.3. Let R be a commutative ring. Let N ⊆ M be R–modules such
that N is a restriction of M . Let s ∈ Σ. If the multiplication by s is an onto
endomorphism of M , then it is also an onto endomorphism of N . Equivalently,
if M is {s}–divisible, then so is N .
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Proof. By the definition of a restriction, for any p ∈ spec R, multiplication
by s is an onto endomorphism of N(p). Thus it is an onto endomorphism of N .

Proposition 4.4. Let R be a commutative ring and S a multiplicative subset
of Σ.

(a) If R is local, then S−1R/R is indecomposable.

(b) Let A be an R–submodule of S−1R such that R ⊆ A. Assume that A/R
is a direct summand in S−1R/R. Then A/R is a restriction of S−1R/R.

(c) Let A be an R–submodule of S−1R such that R ⊆ A. Assume that A/R
is a restriction of S−1R/R. Then A is a subring of S−1R.

Proof. (a) Since R is local, all cyclic modules are indecomposable, hence
S−1R/R is indecomposable (see e.g. [63, Theorem 4.7]).

(b) If A/R is a direct summand of S−1R/R, then, for any p ∈ specR,
(A/R)(p) is a direct summand of (S−1R/R)(p). By part (a) either (A/R)(p) = 0
or (A/R)(p) = (S−1R/R)(p). Then A/R is a restriction of S−1R/R, and (b) is
proved.

To prove (c), let X = {p ∈ spec R | (A/R)(p) 6= 0} be the support of A/R.
For each p ∈ spec R, denote by αp : S−1R → (S−1R/R)(p) the canonical ring
homomorphism. Assume that x

s is an element of S−1R such that αp(
x
s ) = 0

for all p ∈ specR \ X. Then, since (S−1R/R)(p) = (A/R)(p) for all p ∈ X,
we deduce that αp(

x
s ) ∈ (A/R)(p) for all p ∈ spec R. This implies that for

each p ∈ specR there is an element t ∈ R \ p such that t x
s ∈ A and therefore

proves that x
s ∈ A. Conversely, it is clear that αp(A) = (A/R)(p) = 0 for all

p ∈ spec R \ X. We thus conclude that A =
⋂

p/∈X Ker αp, so A is a ring.

We will next investigate direct sum decompositions of S−1R/R under the
assumption of proj dimS−1R ≤ 1.

Note that localizations of projective dimension at most one are rather fre-
quent. For instance, if R is any commutative ring and S = {1 = s0, s1, . . . }
is a countable multiplicative subset of Σ, then pd(S−1R) ≤ 1. This follows by
Lemma 1.30 applied to the filtration ( 1

s0...si
R | i < ω) of S−1R =

⋃
i<ω

1
s0...si

R.
The next proposition goes back to Hamsher:

Proposition 4.5. Let R be a commutative ring. Let S be a multiplicative
subset of Σ such that S−1R has projective dimension at most 1. Let A be a
non–zero R–submodule of S−1R such that proj dim

(
S−1R/A

)
≤ 1. Then A/sA

is R/sR–projective for any s ∈ S. If, in addition, R is local and A is divisible
by a non–unit in S, then A = S−1R.

Proof. Let Q = S−1R and s ∈ S. By assumption, proj dimQ ≤ 1 and
proj dim Q/A ≤ 1, so proj dimA ≤ 1. Then it is well–known that the projective
dimension of A/sA viewed as R/sR–module is also ≤ 1. Since Q/sA ∼= Q/A, the
exact sequence 0 → A/sA −→ Q/sA −→ Q/A → 0 yields that proj dimA/sA ≤ 1.
Now, if the projective dimension of A/sA viewed as R/sR–module equals 1,
then proj dimA/sA = 2, a contradiction. So A/sA is R/sR–projective.

For the second claim it suffices to show that A = tA for each t ∈ S. By the
first part, A/tA is a projective R/tR–module, so, since R is local, A/tA is a free
R/tA–module divisible by a non–unit in R/tR, hence A/tA = 0.
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As proved in Proposition 4.4 the direct sum decompositions of S−1R/R are
parameterized by certain subsets of specR. In the next lemma, we describe the
support of S−1R/R. (Recall that the support of a module M is defined as the
set of all p ∈ mspec R such that M(p) 6= 0; the support is denoted by supp M .)

Lemma 4.6. Let R be a commutative ring. Let S be a multiplicative subset
of Σ, and p ∈ spec R. Then (S−1R/R)(p) = 0, if and only if p ∈ V (S). In
particular, we have supp (S−1R/R) = {p ∈ mspec R | p ∩ S 6= ∅}.

Proof. If p ∈ V (S), then S ⊆ R \ p. Thus (S−1R/R)(p)
∼= R(p)/R(p) = 0.

Let p be a prime ideal of R such that p 6∈ V (S). Let s ∈ p ∩ S. Then 1
s + R(p)

is a non–zero element of S−1(R(p))/R(p) = (S−1R/R)(p).

The following theorem characterizes direct summands in S−1R/R:

Theorem 4.7. Let R be a commutative ring and S be a multiplicative subset of
Σ such that proj dim S−1R = 1. Let M1 = A1/R be a submodule of S−1R/R.
Put X1 = supp S−1R/R and X2 = supp M1. Let

ϕ : S−1R/R →
∏

p∈spec R\V (S)

(S−1R/R)(p)

be the canonical inclusion. Put M2 = ϕ−1(
∏

p∈X2
(S−1R/R)(p)) = A2/R.

Then the following conditions are equivalent:

(a) M1 is a direct summand of S−1R/R.

(b) proj dim(S−1R/A1) ≤ 1 and M1 is a restriction of S−1R/R.

(c) S−1R/R = M1 ⊕ M2.

Proof. Since proj dim(S−1R) = 1, Proposition 4.4 (b) yields the implication
(a)⇒(b), and clearly (c) implies (a).

Assume (b). By the definition of M1 and M2, it follows that M1 ∩ M2 = 0
and also that, for i = 1, 2, (Mi)(p) = 0 for each maximal ideal p 6∈ Xi. We shall

show that S−1R = A1+A2. Take s ∈ S. It is enough to prove that 1
s ∈ A1+A2.

By Lemma 4.3, s induces an onto map on M1 = A1/R, hence sA1 +R = A1.
This implies that A1/sA1 is cyclic and that the map π1 : R/sR → A1/sA1

defined by r + sR 7→ r + sA1, for r ∈ R, is surjective. By Proposition 4.5,
A1/sA1 is a projective R/sR–module, so π1 splits. Thus there exists a ∈ R
such that a−a2 ∈ sR, A1 = aR+ sA1 and 1−a ∈ sA1. So 1−a

s ∈ A1. We show
that a

s ∈ A2. This occurs if and only if ϕ(a
s + R) ∈

∏
p∈X2

(S−1R/R)(p), if and
only if ((a + sR)R/sR)(p) = 0 for each p ∈ X1 ∪ (spec R \ X).

As R/sR = (a + sR)R/sR ⊕ (1 − a + sR)R/sR, (a + sR)R/sR and (1 −
a + sR)R/sR are restrictions of R/sR. For any p ∈ spec R \ X, as s ∈ S,
(R/sR)(p) = 0, hence also ((a + sR)R/sR)(p) = 0. Let p ∈ X1. As (A1)(p) =
(S−1R)(p) and s ∈ S, 0 = (A1/sA1)(p)

∼= ((a + sR)R/sR)(p). This finishes the
proof of (c).

Proposition 4.8. Let R be a commutative ring. Let S1 ⊆ S be multiplicative
subsets of Σ such that proj dim(S−1R) = 1 and proj dim(S−1R/S−1

1 R) ≤ 1.
Then S−1

1 R/R is a restriction of S−1R/R. More precisely,
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(a) If p ∈ V (S1), then (S−1
1 R/R)(p) = 0.

(b) If p ∈ spec R \ V (S1), then (S−1
1 R/R)(p) = (S−1R/R)(p).

Proof. (a) follows from Lemma 4.6. If p ∈ spec R\V (S1), then there exists
a non–unit s ∈ S1 ∩ p ⊆ S. Then Proposition 4.5 yields

(S−1
1 R/R)(p) = S−1

1 (R(p))/R(p) = S−1(R(p))/R(p) = (S−1R/R)(p).

In view of Theorem 4.7 we immediately obtain

Corollary 4.9. Let R be a commutative ring and S1 ⊆ S a multiplicative subset
of Σ such that proj dim S−1R = 1. Then proj dim(S−1R/S−1

1 R) ≤ 1, if and only
if S−1

1 R/R is a direct summand in S−1R/R.

Example 4.10. By Proposition 4.4, the complement of the module S−1
1 R/R

in the statement of Corollary 4.9 is of the form A/R for a subring A of S−1R
containing R.

However, A is not a localization in general: consider the case when R is
a Dedekind domain, S = R \ {0}, and R ⊆ A ⊆ Q = RS−1 is defined by
A/R ∼= E(R/p), where p is a maximal ideal contained in the union of all the
maximal ideals q 6= p (such a p exists iff the class group of R contains torsion–
free elements).

Then A⊕R(p)/R = Q/R, but A is not of the form (S′)−1R for a multiplica-
tive subset S′ ⊆ S: otherwise, since A =

⋂
q 6=p R(q), we have S′ ⊆

⋂
q 6=p(R\q) =

R \ (
⋃

q 6=p q) = R∗, where R∗ is the set of all units of R, so (S′)−1R = R 6= A,
a contradiction.

We will also need Griffith’s notion of a G(ℵ0)–family of submodules:

Definition 4.11. Let R be a commutative ring and M a module. A family S
of submodules of M is a G(ℵ0)–family provided that

(G1) 0,M ∈ S,

(G2) S is closed under unions of chains, and

(G3) if N ∈ S and X is a countable subset of M , then there exists N ′ ∈ S such
that N ∪ X ⊆ N ′ and N ′/N is countably generated.

Lemma 4.12. Let R be a commutative ring, S a multiplicative subset of Σ and
Q = S−1R. Assume proj dimQ ≤ 1. Then the set S of all restrictions of Q/R
is a G(ℵ0)–family of submodules of Q/R.

Proof. Property (G1) is clear, and (G2) follows from Definition 4.2, because
N(p) = N ⊗R R(p), where R(p) is a flat R–module.

Property (G3) is a consequence of the following claim: for each N ∈ S and
each countable subset X ⊆ Q/R, there is a countable multiplicative subset S1 ⊆
S such that X ⊆ S−1

1 R/R and proj dimQ/S−1
1 R ≤ 1. Indeed, Proposition 4.8

then shows that S−1
1 R/R is a restriction of Q/R, and so is N ′ = N + S−1

1 R/R.
Since N ′/N is countably generated, (G3) follows.
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In order to prove the claim, we consider a projective resolution of Q

0 → K
⊆
−→ F

f
−→ Q → 0,

where F = R(S), f(1s) = s−1 for each s ∈ S (where (1s | s ∈ S) is the canonical
basis of F ).

Notice that, if T is a countable multiplicative subset of S, then K ∩ R(T )

is generated by the countable set KT = {1t − t′1t.t′ | t, t′ ∈ T}: indeed, these
elements clearly belong to K. If x ∈ K ∩R(T ), x = 1t0r0 + · · ·+ 1tk

rk, then we
can w.l.o.g. assume that t0 = 1 and, for each m < k, tm+1 = tm.um+1 for some
um+1 ∈ T . Since f(x) = t−1

0 r0 + · · · + t−1
k rk = 0, we have (u1 . . . uk)r0 + · · · +

ukrk−1 + rk = 0. So

x = 1t0r0 + · · · + 1tk−1
rk−1 + 1tk

rk − 1tk
(u1 . . . ukr0) − · · · − 1tk

ukrk−1 − 1tk
rk

= (1t0 − 1tk
(u1 . . . uk))r0 + · · · + (1tk−1

− 1tk
uk)rk−1,

which shows that x is generated by the elements of KT .
Since K is projective, K =

⊕
j∈J Kj where Ki is countably generated (see

Corollary 2.24).
By induction, we define an increasing sequence (Ti | i < ω) of countable

multiplicative subsets of S as follows: T0 is any countable multiplicative subset
of S such that X ⊆ RT−1

0 /R. If Ti is defined, then K ∩ Ti ⊆
⊕

j∈Ai
Kj for a

countable set Ai ⊆ J . Let Bi be a countable subset of S such that
⊕

j∈Ai
Kj ⊆

R(Bi). Define Ti+1 as a countable multiplicative subset of S containing Ti ∪Bi.
Finally, put S1 =

⋃
i<ω Ti. Then S1 is a countable multiplicative subset of S

such that X ⊆ RS−1
1 /R. Moreover, we have the following commutative diagram

with exact rows and columns:

0 0
y

y

0 −−−−→ K ∩ R(S1) ⊆
−−−−→ K −−−−→ K/(K ∩ R(S1)) −−−−→ 0

⊆

y ⊆

y
y

0 −−−−→ R(S1) ⊆
−−−−→ F −−−−→ R(S\S1) −−−−→ 0

y
y

y

0 −−−−→ RS−1
1

⊆
−−−−→ Q −−−−→ Q/RS−1

1 −−−−→ 0
y

y

0 0.

By construction, K ∩ R(S1) =
⊕

j∈
⋃

i<ω
Ai

Kj is a direct summand in K, so

the right hand column gives proj dimQ/S−1
1 R ≤ 1.

Recall that given a commutative ring R and a set S ⊆ R consisting of non–
zero divisors, then the class of all S–divisible modules, DS = {M ∈ Mod–R |
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Ms = M for all s ∈ S}, satisfies DS = S⊥, where S = {R/sR | s ∈ S} ⊆ P<ω
1 .

By Theorem 3.15, DS is a 1–tilting torsion class.
Now we are in a position to prove the main result of this chapter:

Theorem 4.13. Let R be a commutative ring and S a multiplicative subset in
R consisting of non–zero–divisors. Then the following conditions are equivalent:

(a) S−1R is a Matlis localization of R.

(b) T = S−1R ⊕ S−1R/R is a 1–tilting R–module.

(c) S−1R/R decomposes into a direct sum of countably presented R–submod-
ules.

(d) R has a DS–envelope.

Moreover, if T is 1–tilting then T generates the 1–tilting class DS.

Proof. Let Q = S−1R. First we prove the equivalence of (a)–(c):
Assume (a). We will verify conditions (T1)–(T3) for T , thus proving (b).

First the projective dimension of Q, Q/R, and hence of T , is ≤ 1 by the as-
sumption, so (T1) holds. (T3) holds, since there is the exact sequence 0 →
R → Q → Q/R → 0. In order to prove (T2), in view of (T1), it suffices to
show that Ext1R(Q/R,Q(κ)) = 0 for each cardinal κ. However, Ext1R(Q,Q(κ)) ∼=
Ext1Q(Q,Q(κ)) = 0, since Q is a localization of R. So in order to prove that

Ext1R(Q/R,Q(κ)) = 0, it suffices to show that any f ∈ HomR(R,Q(κ)) extends
to some g ∈ HomR(Q,Q(κ)) = HomQ(Q,Q(κ)). But we can simply define
g(q) = f(1)q for all q ∈ Q.

Next, assume (b). Consider the cotorsion pair (A,B) generated by T . By
Theorem 3.16, each module in A is A≤ω–filtered. In particular, this holds for
Q/R ∈ A. Let F be a family corresponding to a A≤ω–filtration of Q/R by
Theorem 2.20 (for κ = ℵ1). Let G = F ∩ S where S is the G(ℵ0)–family of all
restrictions of Q/R coming from Lemma 4.12.

We claim that there is a filtration (Gα | α ≤ σ) of Q/R such that Gα ∈ G for
all α ≤ σ and Gα+1/Gα is countably presented. Indeed, we can define G0 = 0
and Gα =

⋃
β<α Gβ for limit ordinals α. Assume Gα ∈ G is defined and there

is x ∈ (Q/R) \ Gα. Let F0 = S0 = Gα. By Theorem 2.20, there is F1 ∈ F such
that F0 ∪ {x} ⊆ F1 and F1/F0 is countably presented. Clearly S0 ⊆ F1. Let C1

be a countable subset of F1 such that F0+〈C1〉 = F1. Since S is a G(ℵ0)–family,
there S1 ∈ S such that S0 ∪ C1 ⊆ S1 and S1/S0 is countably generated. Then
F1 ⊆ S1. Let D1 be a countable subset of S1 such that S0 + 〈D1〉 = S1. Then
there is F2 ∈ F such that F1∪D1 ⊆ F2 and F2/F1 is countably presented. Then
S1 ⊆ F2. Proceeding in this way, we obtain a chain

Gα = F0 = S0 ⊆ F1 ⊆ S1 ⊆ F2 ⊆ · · · ⊆ Sn ⊆ Fn+1 ⊆ Sn+1 ⊆ . . .

We define Gα+1 =
⋃

n<ω Fn =
⋃

n<ω Sn. Then Gα+1 ∈ G, and since
Fn+1/Fn is countably presented for each n < ω, so is Gα+1/Gα by Lemma
2.29. This proves the claim.

Now each Gα is a restriction of Q/R = Gσ such that (Q/R)/Gα ∈ A, so
(Q/R)/Gα has projective dimension ≤ 1. By Theorem 4.7, Gα is a direct sum-
mand in Q/R, and hence in Gα+1, for each α < σ. This yields a decomposition
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of Q/R into a direct sum of copies of the countably presented modules Gα+1/Gα

(α < σ), so (c) holds.

Assume (c), so Q/R =
⊕

i∈I Mi where Mi is a countably presented R–
module for each i ∈ I.

First we claim that for each i ∈ I, Mi is a direct summand of a module of
the form Ti

−1R/R, where Ti is a countable multiplicative subset of S.
To prove the claim set J0 = {i}. By induction, we can construct an ascend-

ing chain {Jn}n≥0 of countable subsets of I and an ascending chain {Sn}n≥0

of countable multiplicative subsets of S such that
⊕

j∈Jn
Mj ⊆ S−1

n R/R ⊆⊕
j∈Jn+1

Mj for all n ≥ 0. Let J =
⋃

n≥0 Jn and Ti =
⋃

n≥0 Sn. Then⊕
j∈J Mj = T−1

i R/R, and Ti is a countable multiplicative subset of S. This
proves the claim.

Now, since Ti is countable, Ti
−1R is a countably generated flat R–module,

hence Ti
−1R is countably presented and has projective dimension ≤ 1 (see [44,

VI.9]). Then we also have proj dimTi
−1R/R ≤ 1, hence proj dim Mi ≤ 1 for

each i ∈ I, and proj dimS−1R/R ≤ 1, that is, proj dimS−1R ≤ 1 and (a) holds.

Notice that T = Q ⊕ Q/R satisfies Gen(T ) = Gen(Q) ⊆ DS , since Q ∈ DS

and DS is a torsion class. If moreover T is 1–tilting, then Gen(T ) = T⊥ (see
Lemma 3.28), so by the reasoning above, Gen(T ) = (Q/R)⊥ =

⋂
i∈I M⊥

i ⊇⋂
i∈I(T

−1
i R/R)⊥, where Ti (i ∈ I) are countable multiplicative subsets of S.

However, if T = {tk | k < ω} is a countable multiplicative subset of S, then
T−1R =

⋃
k<ω(t−1

0 . . . t−1
k )R and (t−1

0 . . . t−1
k+1)R/(t−1

0 . . . t−1
k )R ∼= R/tk+1R for

each k < ω, and t−1
0 R/R ∼= R/t0R, so (T−1R/R)⊥ ⊇ DS by Lemma 1.30. This

proves that (Q/R)⊥ ⊇ DS , and hence Gen(T ) = DS .

Finally, we prove that (d) is equivalent to (a)–(c). Indeed, if (a)–(c) hold,
then the embedding µ : R → Q is a special DS–preenvelope of R. Since Q
is a localization of R, we have HomR(Q,Q) = HomQ(Q,Q), so the only R–
endomorphism of Q fixing 1 is the identity. Thus, µ is left minimal, and µ is a
DS–envelope of R.

Conversely, assume (d) and let f : R → D be the S–divisible envelope of R.
First we show that D is S–torsion–free. To this end, we take s ∈ S and show
that the multiplication ψ : D → D by the element s is injective. We know that
there is d ∈ D such that sd = f(1). Define an R–homomorphism g : R → D
by g(1) = d. Since f is a DS–preenvelope, there is a map φ : D → D such that
φf = g. So φψf(1) = s(φf(1)) = sg(1) = sd = f(1). By the left minimality of
f we conclude that φψ is an isomorphism, hence ψ is injective.

It follows that D is an S–torsion–free, S–divisible module, hence a Q–
module. In particular D ∈ Gen(Q). Moreover, since f is an S–divisible
preenvelope, each epimorphism R(λ) → X with X S–divisible factors through
f (λ) : R(λ) → D(λ). So D generates DS . This shows that DS is contained in,
and therefore coincides with, Gen(Q).

Let T ′ be a 1–tilting module generating the class DS . Since Gen(Q) =
Gen(T ′), there exist cardinals κ and λ and R–epimorphisms f : (T ′)(κ) → Q
and g : Q(λ) → (T ′)(κ). Then fg : Q(λ) → Q is an R–epimorphism and hence a
Q–epimorphism. So fg, and also f , splits, and the R–module Q is isomorphic
to a direct summand in (T ′)(κ). Then Q has projective dimension ≤ 1, and (a)
holds.

Particular instances of Theorem 4.13 include the classical result of Kaplan-
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sky characterizing Matlis valuation domains as the valuation domains with Q
countable (this follows by taking R a valuation domain and S = R \ {0}), the
theorem of Lee characterizing Matlis domains by the existence of a direct de-
composition of Q/R into countably generated summands (take R a domain and
S = R \ {0}), and the theorem of Fuchs and Salce (= the particular case when
R is a domain and S a multiplicative subset of R).

By Theorem 3.29, the class of all S–divisible modules is a 1–tilting class for
any commutative ring R. It is possible to generalize the notion of a Fuchs tilting
module defined for domains in Example 3.2 to the setting of general commu-
tative rings, so that the resulting 1–tilting module δ′S generates the class of all
S–divisible modules (see [5, §5]). Of course, in the case of Matlis localizations,
δ′S is equivalent to the module S−1R ⊕ S−1R/R by Theorem 4.13.

Theorem 4.13 is helpful in answering the question of the existence of min-
imal versions of preenvelopes in particular cases. We start with its immediate
corollary:

Corollary 4.14. Let R be a domain. Then R has a DI-envelope, if and only
if R is a Matlis domain.

Notice that since DI is a tilting torsion class over any domain, tilting approx-
imations need not have minimal versions (this contrasts with the dual setting of
cotilting approximations, where the minimal versions always exist, see Theorem
3.41).

By Theorem 2.12, (Pn,P⊥
n ) is a complete cotorsion pair. It appears open to

determine when the P⊥
n –preenvelopes have minimal versions (= envelopes) for

n ≥ 1.
Our next corollary will give an answer for n = 1 in the particular case of

Prüfer domains that are not Matlis. In this case, also fp–injective envelopes do
not exist in general:

Corollary 4.15. Assume R is a Prüfer domain.

(a) The cotorsion pair generated by δ is (P1,DI) and DI = FI.

(b) If proj dimQ ≥ 2, then R does not have an FI–envelope.

Proof. (a) The first equality has already been considered in Example 3.2.
Since any Prüfer domain is coherent, each finitely generated submodule of

a finitely presented module is finitely presented. So, if F is finitely presented,
then there exist n < ω and a chain of submodules 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F
such that Fi+1/Fi is cyclic and finitely presented for all i < n. So

FI = {
⊕

I∈F

R/I}⊥ = DI

where F denotes the set of all finitely generated ideals of R.
(b) By part (a) and Corollary 4.14.
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5 Application 2: Finitistic Dimension Conjec-

tures

In this chapter we present applications of tilting approximations to computing
finitistic dimensions of rings and algebras.

The simple, but key fact is that the little finitistic dimension of a right
noetherian ring is finite, if and only if there is a (possibly infinitely generated)
tilting module Tf such that T⊥∞

f = (P<ω)⊥ (see Theorem 5.9 below). The
surprising phenomenon here is that even in the artin algebra case, we cannot
in general take Tf finitely generated, so the infinite–dimensional tilting theory
developed above comes up as a natural tool.

Our first application concerns (non–commutative) Iwanaga–Gorenstein rings.
In Theorem 5.11 we prove that, if R is n–Iwanaga–Gorenstein, then fin dimR =
Fin dimR = n.

In the second application (Theorem 5.13), for a right artinian ring R, we
provide a formula for computing fin dimR involving only approximations of the
(finitely many) simple modules.

Our third application yields a simple proof of a result by Auslander, Reiten,
Huisgen–Zimmermann and Smalø saying that fin dimR = Fin dimR < ∞ in
case R is an artin algebra such that P<ω is contravariantly finite.

This chapter is based on [4] and [7].

Recall that the (right) global dimension of R, gl dimR, is the supremum of
the projective dimensions of all (right R–) modules.

Definition 5.1. Let R be a ring. Denote by Fin dimR the big finitistic di-
mension of R, that is, the supremum of the projective dimensions of arbitrary
modules of finite projective dimension.
Similarly, fin dimR will denote the little finitistic dimension of R, that is, the
supremum of the projective dimensions of all finitely generated modules of finite
projective dimension.
Obviously, fin dimR ≤ Fin dimR ≤ gl dim R for any ring R.

We recall a couple of simple and well–known facts:

Lemma 5.2. Let R be a ring such that gl dim R < ∞.

(a) fin dimR = Fin dimR = gl dim R = max{proj dim R/I | I ⊆ R}.

(b) If R is right semiartinian, then all these dimensions are also equal to

max{proj dim S | S ∈ simp R}.

Proof. This is an easy consequence of Lemma 1.30.

So the little and the big finitistic dimensions provide a refinement of the
homological dimension theory in the case when gl dimR = ∞. The following
example shows that such refinement is needed even in very simple cases:

Example 5.3. Let R be a quasi–Frobenius (= 0–Iwanaga–Gorenstein) ring
which is not completely reducible. (For example, let p be a prime integer, n > 1
and R = Zpn .) Since all projective modules are injective, there is no module of
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projective dimension 1, hence no module of projective dimension m for any m ≥
1. By assumption, there is a non–projective simple module M , so proj dim M =
∞. It follows that fin dimR = Fin dimR = 0, while gl dim R = ∞. (Since
R = Zpn is of finite representation type, it is certainly the finitistic dimension
rather than the global one that reflects better the transparent structure of the
module category Mod–Zpn .)

Notice that, if R is a right ℵ0–noetherian ring, then the possible difference
between Fin dim R and fin dimR comes from (a representative set of) countably
infinitely generated modules of finite projective dimension:

Lemma 5.4. Assume that each right ideal of R is countably generated. Then
Fin dimR = sup{proj dim M | M ∈ P≤ω}.

Proof. This follows by Theorem 2.12.

Example 5.5. Let R be a commutative noetherian ring. Then the little and the
big finitistic dimensions are known to be closely related to other dimensions of
the ring. Bass, Gruson and Raynaud proved that Fin dimR coincides with the
Krull dimension of R. Auslander and Buchsbaum proved that, if R is moreover
local, then fin dimR = depthR, where depthR denotes the length of a maximal
regular sequence in RadR. So in the local case, both dimensions are finite, but
they coincide, if and only if R is Cohen–Macaulay. Examples of commutative
noetherian rings with Fin dimR = findimR = ∞ were constructed by Nagata:

Let R = K[xi | i < ω] be the polynomial ring in countably many variables
over a field K. Let (di | i < ω) ⊆ ω be a strictly increasing sequence of natural
numbers such that di+1 − di > di − di−1 for all i > 0. For each i < ω, let
Pi =

〈
xdi+1, . . . , xdi+1

〉
be the prime ideal in R generated by the variables xj

(di < j ≤ di+1). Let U = R \
⋃

i<ω Pi and let S be the localization of R
at U . Then S is noetherian, the Krull dimension of S is ∞, and fin dimS =
Fin dimS = ∞. For more details we refer to [11, §11].

If R is an arbitrary ring, then the statements

(I) Fin dimR = findimR,

(II) fin dimR < ∞

are known as the first and the second finitistic dimension conjectures for R,
respectively.

In the case of artin algebras, (I) was disproved by Huisgen–Zimmermann:
for each n ≥ 2, she constructed a finite–dimensional monomial algebra Λn such
that fin dimR = n and Fin dimR = n + 1 (see [51]).

Examples with arbitrarily big differences between the two dimensions were
later constructed by Smalø: for each n ≥ 1 there is a finite–dimensional algebra
Rn over a field such that fin dimR = 1 and Fin dimR = n.

The second finitistic dimension conjecture has been proved for all finite di-
mensional monomial algebras [47], all algebras with representation dimension
≤ 3 [55] et al., but it remains open for general artin algebras.

Now we fix our notation for the rest of this section:

Let R be a ring. Denote by Cf = (Af ,Bf ) the cotorsion pair generated by
the class P<ω. Recall that P<ω = P ∩ mod–R, and P<ω is just the class of
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all finitely presented modules of finite projective dimension in case R is right
coherent.

Since P<ω always has a representative set of elements, Cf is complete. So
Af is a special precovering class, but — unlike P<ω — Af always contains
infinitely generated modules. However, Af ⊆ lim

−→
P<ω by Theorem 2.61, so

Af ∩ mod–R = P<ω by Lemma 2.55.

Tilting theory relates to the finitistic dimension conjectures by means of the
following simple observation:

Lemma 5.6. Let n < ω. Let R be a right coherent ring and S be a syzygy closed
class of finitely presented modules. Let (U ,V) be the cotorsion pair generated by
S. Then the following assertions are equivalent:

(a) U ⊆ Pn.

(b) There exists a tilting module T of projective dimension ≤ n such that
V = T⊥∞ .

Proof. Assume (a). By assumption, S ⊆ P<ω
n and S⊥ = S⊥∞ , so V is a

class of finite type, hence n–tilting by Theorem 3.15.
If (b) holds, then U = ⊥(T⊥∞) ⊆ Pn.

Varying the class S, we get a rich supply of (infinitely generated) tilting
modules:

Lemma 5.7. Let R be a right coherent ring and n < ω. Denote by (An,Bn) the
cotorsion pair generated by P<ω

n . Then there is a tilting module Tn of projective
dimension at most n such that Bn = T⊥∞

n .
If R is right noetherian and findimR ≥ n, then Tn has projective dimension n.

Proof. The first assertion follows by Lemma 5.6 for S = P<ω
n .

Assume that R is right noetherian with fin dimR ≥ n. So there is a finitely
presented module M of projective dimension n. Assume that there is a tilting
module T ∈ Pn−1 with Bn = T⊥∞ . On the one hand, by Lemma 5.6 we then
have An ⊆ Pn−1. On the other hand, P<ω

n ⊆ ⊥((P<ω
n )⊥) = An. This implies

that M ∈ Pn−1, a contradiction.

Example 5.8. Let R be a right coherent ring. For all 0 < i ≤ n < ω, denote by
(Ani,Bni) the cotorsion pair generated by the class Ωi−1(P<ω

n ). By Theorem
1.40 and Lemma 1.33, this cotorsion pair is complete and Ani ⊆ Pn−i+1.

By dimension shifting, we have Bni = (P<ω
n )⊥i for all 0 < i ≤ n < ω. Note

that Bni ⊆ Bnj for i ≤ j, Bni ⊆ Bmi for m ≤ n, and Bni ⊆ Bn+k,i+k for each
k < ω.
Clearly An = An1, Bn = Bn1 for all 1 ≤ n < ω, and Bf =

⋂
n<ω Bn.

Let 0 < i ≤ n < ω. Then Lemma 5.6 for S = Ωi−1(P<ω
n ) yields a tilting

module Tni of projective dimension at most n − i + 1 such that Bni = T⊥∞

ni .
In particular, the classes Bnn (n < ω) form an increasing chain of 1–tilting

torsion classes. If R is right noetherian and findimR ≥ n, then, as in Lemma
5.7, we see that the projective dimension of Tni equals n − i + 1.

It is easy to see that there is a single tilting module that controls the global
dimension of the category of all finitely generated modules in the case when R
is right noetherian and the latter dimension is finite:
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Theorem 5.9. Assume R is a right noetherian ring. Then findimR < ∞,
if and only if there is a tilting module Tf such that Bf = T⊥∞

f . In this case

findimR = proj dimTf , and Tf can be taken P<ω–filtered.

Proof. Assume that fin dim R = n < ∞. Then Bf = Bn. By Lemma 5.7

there is a tilting module Tf of projective dimension n such that Bf = T⊥∞

f .

The reverse implication follows by Lemma 5.6 for S = P<ω.
Finally, Tf can be taken P<ω–filtered by Theorem 3.25 (b).

Clearly the module Tf is unique up to the equivalence of tilting modules. In
Theorem 5.19, we will see that even for finite–dimensional algebras with little
finitistic dimension = 1, it need not be possible to select Tf finitely generated.
The proof of Theorem 3.12 provides an explicit construction of Tf :
By a finite iteration of special (P<ω)⊥–preenvelopes (of R etc.), we obtain a
(P<ω)⊥–coresolution of R. The tilting module Tf can simply be taken as the
direct sum of the members of this finite coresolution.

The problem is that, in general, it is rather difficult to compute these special
(P<ω)⊥–preenvelopes, and hence determine T in this way. However, there are
a number of cases when T can be computed explicitly. We start with a very
simple one:

Example 5.10. Let R be a right noetherian ring of finite global dimension. Let
0 → R → I0 → I1 → . . . → In → 0 be the minimal injective coresolution of R.
Then Tf =

⊕
i≤n Ii is a tilting module with proj dimTf = gl dimR = fin dimR

such that T⊥∞

f = (P<ω)⊥. Indeed, in this case P<ω = mod–R, so (P<ω)⊥–
envelopes coincide with the injective envelopes.

There is another, non–trivial case where the tilting module Tf can be taken
as the direct sum of the terms of the minimal injective coresolution of R. This
is the case of (non–commutative) Iwanaga–Gorenstein rings considered in Ex-
amples 2.14 and 3.6. The explicit knowledge of Tf here yields a proof of the
first finitistic dimension conjecture:

Theorem 5.11. Let n ≥ 0 and R be an n–Iwanaga–Gorenstein ring. Then

(a) fin dimR = Fin dimR = n.

(b) Tf =
⊕

i≤n Ii where 0 → R → I0 → I1 → . . . → In → 0 is the minimal
injective coresolution of R.

(c) Af = P = Pn = In = I, Bf = GI is the class of all I0–resolved modules,
and Add(Tf ) = I0.

Proof. First note that by Example 2.14, P = Pn = In = I, so Fin dim R =
n.
By Example 3.6, T =

⊕
i≤n Ii is an n–tilting module. Denote by (A,B) the

tilting cotorsion pair induced by T . Since T is injective and R is right noetherian,
clearly Add(T ) ⊆ I0.

We will prove that Add(T ) = I0. Since Add(T ) = A ∩ B by Lemma 3.8
(c), it suffices to prove that I0 ⊆ A. By Proposition 3.9 (b), each module
B ∈ B is Add(T )–resolved. Denote by B′ the kernel of the n–th map in a
fixed Add(T )–resolution of B. Since Add(T ) ⊆ I0, dimension shifting gives
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Ext1R(I,B) ∼= Extn+1
R (I,B′) for each I ∈ I0. However, I0 ⊆ Pn, so the latter

Ext–group is zero, proving that I ∈ A.
Since Add(T ) = I0, Proposition 3.9 yields that A = In (= P), and B is the

class of all I0–resolved modules. However, by Example 2.14, B = P⊥ = GI is
the class of all Gorenstein injective modules.

Finally, since T is a tilting module, T is of finite type, so B = (A<ω)⊥ (see
Theorem 3.25). However, A<ω = P<ω, so (A,B) = (Af ,Bf ) and T = Tf .
By Corollary 1.42, any module P ∈ P is a direct summand of a P<ω–filtered
module, so we conclude that fin dimR = Fin dimR.

Let R be a right noetherian ring with fin dimR < ∞. Then clearly, a
sufficient condition for fin dimR = Fin dimR to hold is

(III) Af = P.

All our proofs of the first finitistic dimension conjecture for a ring R proceed
by proving (III) (see Theorems 5.11 and 5.21). However, (III) is not necessary
for the first finitistic dimension conjecture to hold, even in the case of artin
algebras. The relevant example goes back to Igusa, Smalø, and Todorov, [54]:

Example 5.12. Let k be an algebraically closed field and R the finite dimen-
sional monomial algebra given by the quiver

1 2

µ ´

¶ ³
6

?± °6

γ

α

β

with the relations αγ = βγ = γα = 0.
Then Fin dimR = findimR = 1, so lim

−→
P<ω = P.

However, using the fact that R has a factor algebra isomorphic to the Kronecker
algebra Λ, and the representation theory of Λ–modules developed by Ringel, one
can show that Af 6= P, that is, Af is not closed under direct limits. For more
details, we refer to [8].

The module Tf is not finite–dimensional. This follows from another impor-
tant property of this example proved in [54], namely that P<ω is not contravari-
antly finite, and from Theorem 5.19 below.

Before proving the finitistic dimension conjectures for all artin algebras with
P<ω contravariantly finite, we recall a formula for computing fin dimR for right
artinian rings proved in [74]:

Theorem 5.13. Let R be a right artinian ring. For each S ∈ simp R, take a
special Af–precover, fS : XS → S. Then

findimR = max{proj dim XS | S ∈ simp R}.

In particular, findimR < ∞, iff XS ∈ P for each S ∈ simp R.

Finally, we will employ infinite–dimensional tilting theory in the proof of
the second finitistic dimension conjecture for right artinian rings such that P<ω

is contravariantly finite, and (ii) in the proof of the first finitistic dimension
conjecture for artin algebras with P<ω contravariantly finite.
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The first result was proved in case of artin algebras by Auslander and Reiten
[13], the second by Huisgen–Zimmermann and Smalø [53]. Our approach is
different, based on [7] and [74].

An class of artinian rings where P<ω is contravariantly finite was studied by
Huisgen–Zimmermann:

Example 5.14. Let R be a right artinian right serial ring (that is, R =⊕
i<m eiR, where eiR is a right artinian right uniserial module and ei is a

primitive idempotent for each i < m). Then P<ω is contravariantly finite.
Moreover, fin dimR = 1+max{proj dim eiJ

l | l < n, i < m,proj dim eiJ
l < ∞}.

Here J = Rad(R) is the Jacobson radical of R, and n the nilpotency index of
J . For more details, we refer to [52].

The following is a criterion for contravariant finiteness of P<ω in terms of
the Af–approximations of simple modules:

Theorem 5.15. Let R be a right artinian ring. Then P<ω is contravariantly
finite, iff we can choose XS ∈ mod–R for all S ∈ simp R.

Proof. Assume XS ∈ mod–R for all S ∈ simp R. Then each finitely gen-
erated module F has a special Af–precover XF → F such that XF is finitely
C–filtered. Hence XF ∈ P<ω, and P<ω is contravariantly finite.

Conversely, let gS : YS → S be a P<ω–precover of S in mod–R. By Corol-
lary 1.9, we can w.l.o.g. assume that gS is a P<ω–cover. By a version of
Lemma 1.12 in mod–R, Ker(gS) ∈ (P<ω)⊥. So gS is a special Af–precover
of S.

As a corollary we obtain a sufficient condition for finiteness of the little
finitistic dimension of right artinian rings:

Corollary 5.16. Let R be a right artinian ring. If P<ω is contravariantly
finite, then findimR < ∞.

Proof. By Theorem 5.15, each simple module S has an Af–approximation
XS → S such that XS ∈ P<ω. By Theorem 5.13, fin dim R < ∞.

The sufficient condition of Corollary 5.16 is not necessary even in the case
when A is a finite–dimensional monomial algebra over an algebraically closed
field: the IST–algebra defined in Example 5.12 above satisfies fin dimR =
Fin dimR = 1, but P<ω is not contravariantly finite.

Using tilting approximations, we will now prove that contravariant finiteness
of P<ω for an artin algebra also implies the validity of the first finitistic dimen-
sion conjecture. First we will need a lemma making use of an idea of Auslander
and Buchweiz [12]:

Lemma 5.17. Let R be an artin algebra over a commutative artinian ring
k, and T be a finitely generated tilting module of projective dimension n. Let
C = T⊥∞ ∩ mod–R.

(a) Each module M ∈ mod–R has C–coresolution dimension ≤ n.

(b) The class C is covariantly finite, and D = ⊥C ∩ mod–R is contravariantly
finite.
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Proof. (a) The claim is trivial for n = 0, since in this case C = mod–R. For
n > 0, consider the long exact sequence

0 → M → I0 → . . . → In−1 → N → 0,

where all Ii (i < n) are finitely generated injective, hence Ii ∈ C.
Since Extm+n

R (T,M) ∼= Extm
R (T,N) = 0 for all m ≥ 1, also N ∈ C.

(b) Let M ∈ mod–R. Let m < ω denote the C–coresolution dimension of
M . By induction on m, we prove that there are two short exact sequences

0 → V1 −→ U1
ϕ1
−→ M → 0 and 0 → M

ϕ2
−→ V2 −→ U2 → 0 such that U1 and U2

have finite add(T )–coresolution dimension and V1, V2 ∈ C.
This is sufficient: since D is resolving in mod–R and add(T ) ⊆ D, we have

U1, U2 ∈ D. So ϕ1 (ϕ2) is a special D–precover (C–preenvelope) of the module
M in mod–R.

Assume m = 0, so M ∈ C. For the first short exact sequence, we take
0 → M −→ M −→ 0 → 0. For the second, we take an exact sequence 0 → C −→
Q −→ M → 0 with Q ∈ add(T ) and C ∈ C.

The latter sequence exists, as the k–module HomR(T,M) has a finite k–
generating set S, so the canonical map f : T (S) → M has the property that
any g ∈ HomR(T,M) can be factorized through f . Since C ⊆ Gen(T ) by
Lemma 3.8 (b), f is surjective, and we put C = Ker(f) and Q = T (S). This
is possible since C ∈ T⊥∞ : indeed, Ext1R(T,C) = 0, because HomR(T, f) is
surjective by construction and T is tilting; moreover, dimension shifting gives
Exti+1

R (T,C) = Exti
R(T,M) = 0 for each i ≥ 1, since M ∈ C.

For the inductive step we split a C–coresolution of M of length m + 1 into
two parts: the exact sequence 0 → M −→ C0

π
−→ K → 0, and the long exact

sequence of length m:

0 → K → C1 → . . . → Cm → 0.

By inductive premise, there is an exact sequence 0 → C −→ Q
ρ
−→ K → 0 with

Q of finite add(T )–coresolution dimension and C ∈ C. Consider the pullback of
π and ρ:

0 0
y

y

C C
y

y

0 −−−−→ M
σ

−−−−→ P −−−−→ Q −−−−→ 0
∥∥∥

y ρ

y

0 −−−−→ M −−−−→ C0
π

−−−−→ K −−−−→ 0
y

y

0 0.

In the middle row, the module Q is finitely add(T )–coresolved and P ∈ C,
so the row provides for the second short exact sequence for M .
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Since P ∈ C, as above, we obtain an exact sequence 0 → V −→ U ′ τ
−→ P → 0

with U ′ ∈ add(T ) and V ∈ C. Consider the pullback of σ and τ :

0 0
y

y

V V
y

y

0 −−−−→ U −−−−→ U ′ −−−−→ Q −−−−→ 0
y τ

y
∥∥∥

0 −−−−→ M
σ

−−−−→ P −−−−→ Q −−−−→ 0
y

y

0 0.

The middle row shows that U has a finite add(T )–coresolution. So the left
column provides for the first short exact sequence required for M .

The following lemma gives the connection between contravariant finiteness
and finite number of generators of the tilting module:

Lemma 5.18. Let R be an artin algebra. Let S be a syzygy closed subclass of
P<ω. Denote by (U ,V) the cotorsion pair generated by S. Then the following
assertions are equivalent:

(a) U<ω is contravariantly finite.

(b) There exists a finitely generated tilting module T such that V = T⊥∞ .

Proof. (a) implies (b): first U<ω ⊆ A<ω
f = P<ω. Let gS : US → S denote

a U<ω–precover of a simple module S ∈ simp R. By Corollary 1.9, we can
w.l.o.g. assume that gS is a U<ω–cover. By a version of Lemma 1.12 in mod–R,
Ker(gS) ∈ (U<ω)⊥ = V. So gS is a U–cover of S.

Let n = max{proj dim US | S ∈ simp R}. Since simp R is a finite set, we
have n < ∞, and S ⊆ U ∩mod–R ⊆ P<ω

n . So U ⊆ Pn, and Lemma 5.6 provides
an n–tilting module T ′ such that V = (T ′)⊥∞ . Moreover, T ′ is equivalent to
the tilting module T =

⊕
i≤n Ti, where T0 is any special V–preenvelope of R,

T1, any special V–preenvelope of T0/R etc.
Since each finitely generated module X has a special U–precover gX : UX →

X such that UX is finitely {US | S ∈ simp R}–filtered, each finitely generated
module X has a special V–preenvelope fX : X → VX with VX ∈ mod–R.
It follows that all Ti (i ≤ n), and hence T , can be taken finitely generated.

(b) implies (a): by (the proof of) Lemma 5.17, for any module Y ∈ mod–R
there is an exact sequence 0 → V −→ U −→ Y → 0 such that V ∈ V<ω and U
has a finite add(T )–coresolution. Hence U ∈ U<ω, and U<ω is contravariantly
finite.

Now we can characterize the artin algebras with P<ω contravariantly finite:
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Theorem 5.19. Let R be an artin algebra. The following assertions are equiv-
alent:

(a) P<ω is contravariantly finite.

(b) There is a finitely generated tilting module Tf such that Bf = T⊥∞

f .

Proof. Since P<ω = Af ∩ mod–R. So the assertion follows from Lemma
5.18 for S = P<ω.

The following lemma is crucial:

Lemma 5.20. Let R be a ring, T a tilting module, and (A,B) the tilting cotor-
sion pair induced by T . Then the following conditions (a) and (b) are equivalent:

(a) Add(T ) is closed under cokernels of monomorphisms.

(b) A = P.

These conditions imply Fin dimR < ∞. If T ∈ mod–R, then these conditions
also imply

(c) A = Af .

If T ∈ mod–R is Σ–pure–injective, then condition (c) implies (a), so all the
three conditions are equivalent. In this case findimR = Fin dimR < ∞.

Proof. Assume (a). On the one hand, by Lemma 3.8 (b), A ⊆ Pn ⊆ P,
where n is the projective dimension of T .

On the other hand, if M ∈ P, then the completeness of (A,B) yields an
exact sequence 0 → M −→ B −→ A → 0 with B ∈ B and A ∈ A. Clearly B ∈ P.
Let m = proj dim B. By Lemma 3.8 (d), there is a long exact sequence

0 → Mm → · · · → M0 → B → 0

with Mi ∈ Add(T ) for all i ≤ m. Using the assumption, and induction, we
obtain that B ∈ Add(T ) ⊆ A. Since A is resolving, we get M ∈ A. This proves
that P ⊆ A, and hence P = A.
Assume (b). Then AddT = P ∩B by Lemma 3.8 (c). So AddT is closed under
cokernels of monomorphisms, since P and B share this property.
Moreover, (b) implies that P is closed under direct sums, hence there is n < ω
with P = Pn, so Fin dim R < ∞. Assume T ∈ mod–R. We will show that (b)
implies (c): indeed, we have Af ⊆ A = P = Pn. By assumption, T ∈ Af , so
A ⊆ Af .
Now assume that T ∈ mod–R is Σ–pure–injective. We will prove that (c) implies
(a):

First we show that every monomorphism in add(T ) splits. Indeed, let 0 →

A
f
−→ B −→ C → 0 be a short exact sequence with A and B in add(T ). By

assumption, add(T ) = mod–R ∩ Add(T ) ⊆ Bf ∩ P<ω. Since P<ω is closed
under cokernels of monomorphisms, we have A ∈ Bf and C ∈ P<ω ⊆ Af . Thus
Ext1R(C,A) = 0 and f splits.
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Now let A ⊆ B and A,B ∈ Add(T ). By assumption, each element of Add(T )
is isomorphic to a direct sum of finitely generated direct summands of T . Let∑

j∈J xjrij = ai (i ∈ I) be a finite system of R–linear equations with ai ∈ A
(i ∈ I) which is solvable in B, by xj = bj (j ∈ J). There is a finitely generated
direct summand A′ ⊆ A such that ai ∈ A′ for all i ∈ I, and a finitely generated
direct summand B′ ⊆ B such that A′ ⊆ B′ and bj ∈ B′ for all j ∈ J . By the
previous paragraph, the embedding A′ ⊆ B′ is pure (even split), so the finite
system is also solvable by some xj = a′

j ∈ A′ (j ∈ J).
This proves that any monomorphism in Add(T ) is pure. Since T is Σ–pure–

injective, each monomorphism in Add(T ) splits, and (a) holds.
Finally, (b) and (c) give Af = P, so each module of finite projective dimen-

sion is a direct summand of a P<ω–filtered module. It follows that fin dimR =
Fin dimR.

Now we can prove the main result of this section:

Theorem 5.21. Assume that R is an artin algebra such that P<ω is con-
travariantly finite. Then every module of finite projective dimension is a direct
summand of a P<ω–filtered module, and Fin dimR = findimR < ∞.

Proof. By Theorem 5.19, there is a finitely generated tilting module Tf such

that Bf = T⊥∞

f . Clearly Tf is Σ–pure–injective and condition (c) of Lemma
5.20 holds for T = Tf . Condition (b) then gives Af = P, and the final claim
follows again by Lemma 5.20.
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